Заметим все же, что фазовые портреты – даже самый богатый энергией фазовый портрет рисунка 6 – обнаруживают определенную тенденцию энергопотребления: каждая дуга такого портрета, как правило, выпукла, что означает замедление роста. Такое замедление, как и в случае популяций, объясняется ограниченностью ресурсов и условий жизни. В случае энергии, запасы ископаемых топлив могут быть еще очень велики, но добыча их стоит все дороже, что стимулирует экономное использование энергии. С другой стороны, экологические условия ограничивают рост промышленности, во всяком случае, "тяжелой" промышленности, использующей много энергии. В будущем можно предвидеть поэтому стабилизацию потребления энергии, подобно тому, как теперь стабилизируется население Земли – о чем еще будет речь. Как мы видели выше (рис.2), начиная с семидесятых годов энергопотребление растет уже по линейному закону, вместо экспоненциального закона, страшившего предыдущие поколения. Конечно, этот процесс стабилизации может быть задержан ростом потребления энергии в "развивающихся" странах.
Техническая деятельность человека, и прежде всего энергетика, основанная на сжигании углеродных топлив, изменяет состав земной атмосферы. Это изменение неизбежно приводит к изменению климата, которое уже наблюдается и может быть предсказано на будущее, если наша техника будет лишь количественно умножаться, оставаясь на нынешнем уровне развития.
Атмосфера представляет в своем естественном виде смесь газов, почти неизменную по составу, если не считать водяного пара, составляющего, в зависимости от температуры, от 0 до 4% объема воздуха. Сухой воздух содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,036% углекислого газа и очень небольшие количества других инертных газов, водорода, озона, метана и окиси азота.
Энергетический баланс Земли . Полная энергия солнечного излучения хорошо известна. Известно также, какая часть ее задерживается земной атмосферой, рассеивающей это излучение: лишь около половины его достигает поверхности Земли. Мощность излучения, падающего на эту поверхность, точно измерена. В среднем на одного жителя Земли в наше время приходится около 50000 киловатт солнечной энергии. Для сравнения заметим, что мощность всей нашей промышленности составляет меньше одного киловатта на человека, так что опасность прямого перегрева от технической деятельности нереальна. Можно было бы подумать, что эта деятельность слишком мала по сравнению с космическими процессами, чтобы внушать серьезные опасения. Как мы увидим дальше, для таких опасений есть причины.
Земля (без атмосферы) получает излучение в широком диапазоне частот. Частота излучения ν обратно пропорциональна его длине волны λ , так что λν=c, где c – скорость света. Лучи самых высоких частот или, что то же, самые коротковолновые – это гамма-лучи, рентгеновские и ультрафиолетовые лучи. Они составляют небольшую часть солнечного излучения и в основном задерживаются верхними слоями атмосферы, в особенности слоем озона – к счастью для нас, потому что эти лучи опасны для жизни. Около половины солнечной энергии, достигающей поверхности Земли, относится к "видимому свету", то есть воспринимается нашим зрением; наибольшая интенсивность этого излучения приходится на волны длиной около 0,5 микрона, соответствующие желтому цвету (поэтому Солнце считается у астрономов "желтой звездой").
Другая половина поступающего на Землю излучения – это невидимые длинноволновые лучи, так называемое инфракрасное или тепловое излучение. Мы можем ощутить такое излучение, приблизив руку к радиатору водяного отопления.
Земля, в свою очередь, излучает в космос, но только инфракрасные лучи, длиной от 3 до 30 микронов. Видимого света Земля не излучает: она "не светится". Поскольку температура Земли (на ее излучающей поверхности) меняется очень медленно, то, по законам термодинамики, Земля должна находиться в "термодинамическом равновесии" с окружающей средой, то есть излучает столько же энергии, сколько поглощает. Так как величина падающего на Землю излучения известна, то известно и ее собственное излучение, которое мы обозначим через W.
Энергия, излучаемая телом, конечно, зависит от его температуры. Например, горячая металлическая крышка плиты излучает тем больше, чем сильнее она нагрета. Оказывается, существует важный класс тел, излучение которых вполне определенным образцом зависит от их температуры: это так называемые "абсолютно черные тела". Абсолютно черным называется тело, поглощающее все падающее на него излучение. Термин этот объясняется тем, что тела, окрашенные в черный цвет, поглощают большую часть падающего излучения. Зеркала, напротив, почти не поглощают излучения, а отражают его. Звезды и планеты, как доказано в астрофизике, с большой точностью можно считать абсолютно черными телами. Конечно, они светятся "отраженным светом", вследствие чего Луну и Землю можно видеть из космоса, но доля отраженного излучения очень мала. Для вычисления баланса энергии Землю можно считать, с большой точностью, абсолютно черным телом. Как уже было сказано, при постоянной температуре Земля излучает столько же энергии, сколько поглощает – хотя и в другом спектре излучения, только инфракрасном.
Читать дальше