Абрам Фет - Катастрофы в природе и обществе

Здесь есть возможность читать онлайн «Абрам Фет - Катастрофы в природе и обществе» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Издательство: Сибирский хронограф, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Катастрофы в природе и обществе: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Катастрофы в природе и обществе»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Катастрофы в природе и обществе — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Катастрофы в природе и обществе», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При подъеме на d 1левый конец кривой M = f(K), находящийся в начале координат, поднимается в точку (0,d 1) и оказывается таким образом выше биссектрисы координатного угла. С другой стороны, при больших значениях K кривая M = f(K) совпадает с прямой M = c 1K, где 0 < c 1< 1. Следовательно, наклон этой прямой к оси K меньше 450, и эта прямая, а вместе с ней и фазовая кривая при больши'х K, лежит ниже биссектрисы. Для промежуточных значений K возможны разные случаи.

(1) Кривая M = f(K) + d 1пересекает биссектрису в единственной точке 1 (рис.6) в направлении сверху вниз. Из прямого геометрического рассмотрения рисунка 1 ясно, что так обстоит дело при не слишком больших значениях d 1, когда точки кривой, далекие от биссектрисы в начале подъема, не успевают до нее подняться. При этом получается верхняя кривая, изображенная на рисунке 6.

Прием отражения в биссектрисе, выработанный в главе 1, показывает, что на этой кривой есть единственная точка устойчивого равновесия – точка 1; обозначим ее абсциссу через K 1. Точка фазовой кривой P 0c абсциссой K 0при K 0< K 1движется вправо, и через некоторое число шагов, соответствующих в нашей условной хронологии годам, подойдет сколь угодно близко к точке 1. Если же исходное значение K 0> K 1, то точка фазовой кривой движется влево, к той же точке 1. Итак, точка 1 изображает состояние среды с установившейся концентрацией загрязнения K 1. Поскольку фазовая кривая больше нигде не пересекает биссектрисы, других точек устойчивой концентрации нет. Насколько велика концентрация K 1, зависит от формы кривой деструкции M = f(K) и от значения среднегодовой концентрации d 1. По этим данным, как мы увидим, можно заранее предсказать устойчивую концентрацию K 1, а, следовательно, решить, будет ли терпимо предприятие с таким загрязнением, и если надо, отказаться от его постройки или закрыть его.

Рис.6

(2) Кривая M = f(K) + d 1пересекает биссектрису в трех точках 1, 2, 3. Это происходит при бо'льших значениях d 1: при возрастании d1 кривая M = f(K) + d 1поднимается, и при некотором значении d 1= d 1aее выпуклая часть касается биссектрисы, после чего часть этой кривой поднимается над биссектрисой, как это видно на рисунке 7 (верхняя кривая). Мы будем называть число d 1aпервым критическим значением. Поскольку при больших значениях K эта кривая параллельна прямой M = c 1K, образующей с осью K угол меньше 45 0, то она в конце концов уходит под биссектрису. Тогда кривая M = g(K) в самом деле пересекает биссектрису в трех точках, которые мы и обозначили через 1, 2, 3.

Рис.7

(3) Кривая M = f(K) + d 1, при еще бо'льших значениях d 1, пересекает биссектрису опять в единственной точке 3, а точка 1 исчезает (рис.8). В самом деле, если дальше увеличивать d 1, то при некотором значении d = d 1b(которое мы назовем вторым критическим значением) вогнутая часть кривой касается биссектрисы, а затем поднимается выше нее, так что точки пересечения 1 и 2 исчезают. Но точка пересечения 3 остается, так как при больших значениях K кривая по-прежнему опускается ниже биссектрисы. Концентрация загрязнения K 3, равная абсциссе точки 3, в этом случае еще выше, чем в случае (2). Для большинства загрязнителей такой уровень концентрации недопустим.

Рис.8

Важнейшее практическое значение имеет точка устойчивого равновесия 1 – режим, в котором работают все "нормальные" (не экологически преступные) предприятия. Для этой точки надо найти концентрацию загрязнения K 1– ее абсциссу.

Поскольку все наши кривые – эмпирические, требуемое значение K 1находится графически. Это делается, как показано на рисунке 9. Нижняя кривая на этом рисунке – фазовый портрет деструкции М = f(К), верхняя кривая – фазовый портрет непрерывного загрязнения М = g(К), получаемый из предыдущего подъемом на d 1. Отложим по оси М вниз от начала координат отрезок ОP 0длины d 1, затем проведем через точку Р 0прямую, параллельную биссектрисе, до пересечения с нижней кривой в точке Р 1. Тогда вертикальная прямая, проходящая через Р 1, пересекает биссектрису в точке, лежащей выше точки Р 1на d 1и, следовательно, принадлежащей верхней кривой; но поскольку точка пересечения верхней кривой с биссектрисой есть не что иное, как точка равновесия 1 (см. рис.6), то мы нашли точку 1. Поэтому абсцисса точки Р 1, которую мы обозначим через К 1, равна ординате точки 1, а эта последняя состоит из отрезка К 1Р 1длины f(К 1) и отрезка Р 11 длины d 11 – то есть K 1= f(K 1) + d 1, иначе говоря, K 1есть корень уравнения K = f(K) + d 1.

Рис.9

Картина экологического бедствия

Концентрация загрязнения, о которой была речь выше, относится, конечно, к определенной точке местности, окружающей предприятие. Рассмотрим простейший случай, когда эта местность однородна, то есть окружающая среда везде одинакова. Тогда реакция этой среды на загрязнение везде одна и та же, то есть во всех точках окружающей местности действует одна и та же фазовая кривая деструкции попавшего в эту точку загрязнения: M = f(K). Напомним, что эта кривая характеризует процесс деструкции исходной концентрации K, каким бы образом она ни образовалась, и зависит только от свойств среды, которую мы считаем однородной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Катастрофы в природе и обществе»

Представляем Вашему вниманию похожие книги на «Катастрофы в природе и обществе» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Всеволод Абрамов
Отзывы о книге «Катастрофы в природе и обществе»

Обсуждение, отзывы о книге «Катастрофы в природе и обществе» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x