Расчет был верен при соблюдении двух условий: изолированности всей системы и ее консервативности (то есть независимости от движения и зависимости от взаимного расположения или конфигурации тел).
В то же время расчет становился неверным, если работа данных сил зависела от формы пути или силы зависели от скорости движения, если в действие включались «непредусмотренные» силы, такие как сила трения (при этом часть работы рассеивается). Грубо говоря, точно рассчитать работу в механике можно было, исключив «лишние» факторы, то есть перейдя с теоретического на практический уровень, где система по определению не может быть консервативной и изолированной.
По сути, закон сохранения механической энергии работал только для определенного типа явлений, когда трением можно было пренебречь (например, при коротком времени воздействия). Массированный переход к внедрению технических изобретений из лабораторий в промышленное производство требовал прежде всего ответа на вопрос, как и куда уходит потенциальная энергия, совершая работу. Классическая механика ответить на него не могла.
30. Переход от теплородной к кинетической теории теплоты
Теплота и температура как понятия до середины XIX в. были в естествознании синонимами. Этому способствовало существование дополнительного компонента – теплорода . Под теплородом понималась особая составляющая всех материальных тел, способная изнутри нагревать эти тела. Теплород пытались выявить экспериментально, ничего не нашли, но тем не менее признали, что это тончайшая жидкость, которую тело впитывает от солнца, невидимая, невесомая и воспринимаемая органами чувств и приборами как холод или тепло. Уже само определение теплорода должно было скептически настроенных ученых насторожить. Смертельный удар по теплороду нанес ученый Румфорд.
Он решил провести опыты с трением. Теория теплорода объясняла, что при трении из объектов выжимается жидкий теплород, из-за чего изменяется их теплоемкость. Румфорд провел эксперимент по сверлению пушечного ствола и четко зафиксировал результаты: время сверления 150 минут, за счет трения совершена работа, достаточная для испарения 12 кг воды, в то же время получено 270 г металлической стружки, имеющей ту же теплоемкость, что и отливка.
Поскольку источник теплоты, происходящей от трения, был неисчерпаем, а изолированное тело или система тел не может поставлять теплород без ограничения, то полученная теплота теплородом объясняться не может. Так было доказано, что теплорода не существует. В 1827 г. Карно провел теоретический анализ процесса превращения теплоты в работу, а Майер установил механический эквивалент теплоты. Опытным путем он пришел к выводу, что теплоемкости газа при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы (Ср > Сv). Рассматривая теплоту как «силу», то есть энергию, Майер объяснил неодинаковость теплоемкости. При вычислении теплоты по формуле dС = Ср – Сv, он сопоставил теплоту с работой А и получил механический эквивалент теплоты. Его исследования дополнил Джоуль, получивший точный результат механического эквивалента теплоты. Для этого он провел эксперимент, позволивший соотнести затраченную механическую работу с процессом нагревания жидкости: механическую работу выполняла опущенная в жидкость вращающаяся лопатка, нагревание жидкости регистрировалось термометром. В результате работ Майера, Джоуля и Гельмгольца был открыт закон сохранения энергии.
31. Переход от механики к термодинамике
Появление термодинамики как раздела физики прежде всего связано с работами Майера, Джоуля, Гельмгольца, Клаузиуса, Кельвина, Карно. Рождению термодинамики способствовали исследования Карно, ориентированные на практическое применение тепловых машин, а свое название термодинамика получила благодаря Кельвину. Значимыми в термодинамике являются обе части слова – термо , то есть теплота, не входившая как понятие в классическую физику, и динамика , движение, работа – сразу вносившая ясность, что процессы в этом разделе физики не будут рассматриваться как статичные.
Термодинамика изучает особенности превращения тепловой формы движения в другие, не учитывая микроскопического движения частиц, составляющих вещество. В термодинамике существует более мелкое деление структуры – на: термодинамику равновесных систем или систем, переходящих к равновесию (классическая, или равновесная термодинамика), и термодинамику неравновесных систем (неравновесная термодинамика). Классическая термодинамика сформировалась к середине XIX в., а неравновесная термодинамика – ко второй половине XX в.
Читать дальше
Конец ознакомительного отрывка
Купить книгу