Конечно, мы не имеем права настаивать на существовании суперсимметрии в нашей Вселенной только ради того, чтобы сделать наши расчеты проще. Должна существовать более веская причина, чем простое удобство. И она существует. Одним из преимуществ теории суперсимметрии является то, что она автоматически обеспечивает устойчивое состояние вакуума — основного состояния в общей теории относительности, благодаря чему наша Вселенная может избежать постоянного падения во все более и более глубокие энергетические ямы. Эта идея относится к гипотезе о положительности массы, о которой уже шла речь в третьей главе. На самом деле суперсимметрия была одним из инструментов Эдварда Виттена в доказательстве его гипотезы, основанной на физических представлениях, однако в более нелинейном математическом подходе, разработанном Ричардом Шоном и мной, ей места не нашлось.
Но большинство физиков заинтересованы в идее суперсимметрии по иной причине, которая, собственно, и привела к возникновению этого понятия. Для физиков наиболее важным аспектом является концепция симметрии, связывающей элементарные частицы материи, иначе называемые фермионами , к которым относятся, например, кварки или электроны, и частицы, отвечающие за взаимодействия, иначе называемые бозонами , — такие как фотоны и глюоны. Суперсимметрия приводит к возникновению подобия, своего рода математической эквивалентности, между силами и материальными объектами, то есть между этими двумя классами частиц. Теория утверждает, что каждый фермион связан с определенным бозоном — его суперпартнером , и то же самое верно для любого бозона. Таким образом, теория предсказывает существование целого класса элементарных частиц с забавными названиями, такими как скварки , сэлектроны , фотино и глюино , — более тяжелыми по сравнению со своими известными аналогами и со спином, отличающимся от спина своих партнеров на 1/2. До настоящего времени эти суперпартнеры в природе не наблюдались, хотя исследователи продолжают их поиск при помощи мощнейших ускорителей (см. двенадцатую главу).
Мир, в котором мы живем, называемый физиками «миром низких энергий», несомненно, суперсимметричным не является. В то же время принято считать, что суперсимметрия доминирует в области высоких энергий, и в этой области элементарные частицы и их суперпартнеры идентичны. Но как только энергия становится ниже некого определенного значения, суперсимметрия «разрушается», и тот мир, в котором мы живем, является миром нарушенной суперсимметрии, где элементарные частицы и их суперпартнеры различны как по массе, так и по другим свойствам. Разрушившись, суперсимметрия не исчезает полностью, но переходит в скрытую фазу. По словам физика Тристана Хабша из Университета Говарда, моего бывшего постдока, можно понять существование различия в массах, мысленно заменив суперсимметрию на вращательную симметрию некого объекта, например вертикально расположенного гибкого стержня. Представьте, что вы закрепили концы стержня и изгибаете его в двух направлениях, перпендикулярных стержню. Вне зависимости от того, под каким углом вы на него нажимаете, объясняет Хабш, пока вы будете делать это в направлении, перпендикулярном направлению стержня, каждое из этих возмущений будет требовать одно и то же количество энергии. «И поскольку эти малые перемещения связаны друг с другом посредством вращательной симметрии, можно свободно заменять одно из них на другое».
Предположим, что мы ударили по стержню, возбудив в нем поперечные колебания. Эти колебания будут обладать вращательной симметрией и будут эквивалентны двум различным элементарным частицам, а энергия колебаний будет определять массу частиц. Наличие вращательной симметрии (или суперсимметрии, в случае теории струн) позволяет двум элементарным частицам иметь одинаковую массу и оставаться неразличимыми во всех прочих отношениях.
Вращательную симметрию — в данном случае служащую заменой суперсимметрии — можно разрушить, согнув стержень наподобие лука. Чем сильнее мы сведем его концы, тем больше будет изгиб и тем сильнее нарушится симметрия. «После того как симметрия нарушена, по-прежнему существуют два вида колебаний, но они уже не связаны друг с другом вращательной симметрией», — говорит Хабш. Чтобы возбудить колебания в плоскости изгиба, как и раньше, требуется энергия, и чем больше величина изгиба, тем эта энергия больше. Но если толкнуть стержень в направлении, перпендикулярном плоскости изгиба, стержень придет во вращательное движение, не требующее для своего поддержания никаких затрат энергии (конечно, при условии, что затратами энергии на преодоление силы трения между концами стержня и их креплениями можно пренебречь). Иными словами, между этими двумя движениями существует разница в энергиях, или энергетическая щель, — одно из них требует затрат энергии, а второе — нет, что соответствует энергетической разнице (или разнице в массах) между безмассовой элементарной частицей и ее суперпартнером, обладающим массой, в случае разрушенной суперсимметрии. [65] Tristan Hubsch (Howard University), interview with author, August 30, 2008.
Физики пытаются обнаружить признаки существования подобной энергетической щели и таким образом доказать существование обладающих массой суперсимметричных партнеров привычных нам частиц в высокоэнергетических экспериментах, приводящихся в настоящее время на Большом адронном коллайдере.
Читать дальше