Установление формы пространства Калаби-Яу, включая форму его горловины, потребует точных измерений спектрального индекса и обнаружения не-гауссовости, гравитационных волн, а также космических струн. Шиу предлагает запастись терпением. «Хотя мы уверены в Стандартной модели, эта модель не возникла единовременно. Она родилась из последовательности экспериментов, проводившихся много лет. Сейчас нам необходимо выполнить множество измерений, чтобы убедиться, действительно ли существуют дополнительные измерения или действительно ли за всем этим стоит теория струн». [241] То же.
Главная цель исследований заключается не только в том, чтобы прощупать геометрию скрытых измерений, но и в том, чтобы проверить теорию струн в целом. Макаллистер, между прочим, полагает, что этот подход может дать нам наилучший шанс проверить теорию. «Возможно, теория струн предскажет конечный класс моделей, ни одна из которых не будет соответствовать наблюдаемым свойствам ранней Вселенной, и в таком случае мы могли бы сказать, что наблюдения исключили теорию струн. Некоторые модели уже отброшены, что вдохновляет, потому что это означает, что современные данные действительно позволяют выявить различие между моделями».
Она добавляет, что, несмотря на то что такое заявление не является абсолютной новостью для физиков, оно является новым для теории струн, которая подлежит экспериментальной проверке. И продолжая свою мысль, Макаллистер говорит, что в настоящее время инфляция в искривленной горловине является одной из лучших моделей, которые мы до сих пор создали, «но реально инфляция может и не иметь места в искривленных горловинах, даже если картина будет выглядеть безупречно». [242] То же.
Наконец, Рэчел Бин соглашается, что «инфляционные модели в искривленных горловинах могут не дать ожидаемого ответа. Но эти модели основаны на геометриях, вытекающих из теории струн, на основании которой мы можем сделать детальные предсказания, которые затем можно проверить. Другими словами, это хорошая отправная точка для старта». [243] То же.
Хорошей новостью является то, что для старта существует не единственная отправная точка. В то время как одни исследователи прочесывают ночное (или дневное) небо в поисках признаков дополнительных измерений, глаза других нацелены на Большой адронный коллайдер. Обнаружение намеков на существование дополнительных измерений не является приоритетной задачей коллайдера, но в списке его заданий стоит достаточно высоко.
Самой логичной отправной точкой для струнных теоретиков является поиск суперсимметричных партнеров уже известных частиц. Суперсимметрия вызывает интерес у многих физиков, а не только у струнных теоретиков: суперсимметричные партнеры, обладающие самой маленькой массой, а это могут быть нейтралино, гравитино или снейтрино, чрезвычайно важны в космологии, поскольку они считаются главными кандидатами на роль темной материи. Предположительная причина, по которой мы еще не наблюдали эти частицы и пока они остаются для нас невидимыми и, следовательно, темными, заключается в том, что они массивнее обычных частиц. В настоящее время не существует достаточно мощных коллайдеров, способных рождать эти более тяжелые «суперпартнеры», поэтому на Большой адронный коллайдер возлагаются большие надежды.
В моделях на основе теории струн, разработанных Кумруном Вафой из Гарвардского университета и Джонатаном Хекманом из Института перспективных исследований, гравитино — гипотетический суперпартнер гравитона (частицы, ответственной за гравитацию) — является самым легким суперпартнером. В отличие от более тяжелых суперпартнеров, гравитино должен быть абсолютно стабильным, так как ему не на что распадаться. Гравитино в вышеуказанной модели составляет большую часть темной материи Вселенной. Хотя гравитино характеризуется слишком слабым взаимодействием, чтобы его можно было наблюдать с помощью Большого адронного коллайдера, Вафа и Хекман полагают, что другая теоретическая суперсимметричная частица — тау-слептон ( stau ), суперпартнер так называемого тау-лептона — должна быть стабильной где-то в диапазоне от секунды до часа, а это больше чем достаточно, чтобы ее зафиксировали детекторы коллайдера.
Обнаружение таких частиц подтвердит важный аспект теории струн. Как мы уже видели, многообразия Калаби-Яу были тщательно выбраны струнными теоретиками в качестве подходящей геометрии для дополнительных измерений, отчасти из-за суперсимметрии, автоматически встроенной в их внутреннюю структуру.
Читать дальше