Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь есть возможность читать онлайн «Шинтан Яу - Теория струн и скрытые измерения Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Питер, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория струн и скрытые измерения Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория струн и скрытые измерения Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория струн и скрытые измерения Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь попробуем собрать воедино все идеи, выдвинутые ранее, начиная с нашего двухмерного примера. Заменив радиусы всех подмногообразий (окружностей) на 1/r , вы обнаружите, что многообразие, состоящее из этих окружностей, изменит свой радиус, но все равно останется тором. Данный пример называют тривиальным, поскольку многообразие и его зеркальный партнер топологически идентичны. Четырехмерный пример с K3-поверхностями также является в некотором отношении тривиальным, поскольку все K3-поверхности топологически эквивалентны. Шестимерный пример с трехмерными многообразиями Калаби-Яу намного интереснее. Компонентами этого многообразия являются трехмерные торы. T-дуальность заменяет их радиусы на обратные. Для несингулярного тора изменение радиуса не приводит к изменению топологии. Однако по словам Гросса, «даже если все исходные подмногообразия принадлежали к числу “хороших” [несингулярных], изменение радиуса все же может повлечь за собой изменение топологии многообразия в целом, поскольку части… могут быть собраны вместе нетривиальным образом». [115] Gross, interview with author, September 24, 2008.

Это утверждение проще всего понять при помощи аналогии. Взяв набор линейных сегментов или, например зубочисток, можно сделать из них цилиндр, втыкая их определенным образом в кружок из пробки. Вместо цилиндра, имеющего две стороны, из тех же зубочисток можно сделать и одностороннюю ленту Мёбиуса, втыкая их под небольшим углом друг к другу. Итак, из одних и тех же частей (подмногообразий) можно получить объекты с совершенно разной топологией. [116] Mark Gross, e-mail letter to author, September 29, 2008.

Дело в том, что, проведя преобразование T-дуальности и используя различные методы сборки подмногообразий, мы получим два топологически различных многообразия, идентичных с точки зрения физики. Это часть того, что мы подразумеваем под зеркальной симметрией, но это далеко не все, поскольку другая важная особенность T-дуальности состоит в том, что зеркальные пары должны иметь эйлеровы характеристики противоположных знаков. Однако все многообразия, рассмотренные здесь — особые лагранжевы многообразия, — имеют эйлеровы характеристики, равные нулю, которые не изменяются при замене радиусов на 1/r .

Все сказанное выше выполняется для «хороших» (несингулярных) подмногообразий, а для «плохих» (сингулярных) работать не будет. В таких подмногообразиях T-дуальность приведет к изменению знака эйлеровой характеристики с +1 на -1 и наоборот. Предположим, что исходное многообразие включает тридцать пять плохих подмногообразий, двадцать пять из которых имеют эйлерову характеристику, равную + 1, а десять — равную -1. Как показал Гросс, эйлерова характеристика многообразия является суммой эйлеровых характеристик входящих в него подмногообразий — в данном случае она будет равна + 15. В зеркальном многообразии все будет наоборот: двадцать пять подмногообразий будут иметь эйлерову характеристику, равную -1, а десять — +1, что даст в результате -15 — величину, противоположную эйлеровой характеристике исходного многообразия — что как раз и было нам нужно.

Эти “плохие” подмногообразия, как уже обсуждалось выше, соответствуют “плохим” точкам в пространстве модулей В . Как объясняет Гросс: «Все самое интересное в зеркальной симметрии, все топологические изменения происходят в вершинах пространства В». Итак, возникшая картина делает пространство В центральным объектом зеркальной симметрии. С самого начала это явление было покрыто мистическим туманом. «У нас были в наличии два многообразия, X и X' , неким образом связанные друг с другом, но что именно у них было общего — понять сложно», — добавляет Гросс. Этим «общим» оказалось пространство В , о существовании которого никто изначально не подозревал.

Гросс считает пространство В чем-то вроде кальки. Взглянув на кальку под одним углом, вы увидите одну структуру (многообразие), посмотрев под другим углом — другую. Эта разница обусловлена наличием сингулярных точек в пространстве В , в которых T-дуальность перестает хорошо работать, что и приводит к изменениям.

Приблизительно такова современная картина зеркальной симметрии с точки зрения гипотезы SYZ. Одним из главных преимуществ этой гипотезы, по словам Строминджера, является то, что «происхождение зеркальной симметрии несколько прояснилось. Она пришлась по вкусу математикам, предоставив им геометрическую картину возникновения зеркальной симметрии — теперь они уже могли не ссылаться в своих исследованиях на теорию струн» [117] Strominger, interview with author, August 1, 2007. . В дополнение к геометрическому объяснению зеркальной симметрии наша гипотеза, по словам Заслоу, «предложила метод создания зеркальных пар». [118] Zaslow, interview with author, June 26, 2008.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория струн и скрытые измерения Вселенной»

Представляем Вашему вниманию похожие книги на «Теория струн и скрытые измерения Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория струн и скрытые измерения Вселенной»

Обсуждение, отзывы о книге «Теория струн и скрытые измерения Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x