Александр Гордон - Диалоги (сентябрь 2003 г.)

Здесь есть возможность читать онлайн «Александр Гордон - Диалоги (сентябрь 2003 г.)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Диалоги (сентябрь 2003 г.): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Диалоги (сентябрь 2003 г.)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В настоящем сборнике представлены стенограммы ночных передач-диалогов телевизионной программы Александра Гордона:
1. Эффекты сверхмалых доз.
2. Рождение художественного текста.
3. Предел времени.
4. Солнечная система.
5. Луна.
6. Солнечная активность.
7. Венера.
8. Судьбы планет.
9. Астероидная опасность.
10. Грибы.
11. Класс интеллектуалов.
12. Математика нелинейного мира.
13. Синхротронное излучение.

Диалоги (сентябрь 2003 г.) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Диалоги (сентябрь 2003 г.)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Например, траектория вторичного векторного поля, это не обычная кривая, а такая, которая удовлетворяет «принципу неопределенности». Она, вообще говоря, не существует, существует виртуально. Но когда мы ее загоним в ящик, как говорят физики, тогда она станет вполне определенной.

Кроме того, в последние годы были наблюдены поразительные совпадения. Физики пытались своими методами прояснить некоторые темные места квантовой теории поля. Мы же размышляли над «дурацкой проблемой» о том, что такое дифференциальные уравнения. Потом совершенно независимо обнаружили, что результаты физиков – это элементы уже «нашей» готовой теории. Мы даже и не думали, что это как-то связано с квантовой физикой. Речь идет, я скажу специалистам, об «антиполях», о «духах» и т.п. Кстати, это научный термин – «дух», ghost. Этот термин сами физики выдумали, в физике есть другие мистические слова – аномалия, перенормировка и так далее. Они указывают на то, что сам этот язык ненормален. Это на самом деле, я бы сказал так, полублатной язык. Физикам просто уже не хватает слов, чтобы объяснить происходящее.

Я сейчас абсолютно уверен, что ВТОРИЧНОЕ дифференциальное уравнение превратит квантовую физику в точную науку в том же смысле, каковой является классическая физика, благодаря языку «первичных» дифференциальных уравнений.

Вот, пожалуй, главное, что я хотел сказать. И еще хочу отметить, что вторичное дифференциальное уравнение – это язык очень интересный. Покажите мне, пожалуйста, картинку 12. Что общего у квантовой теории поля с этой картинкой? Сейчас я вам расскажу, что такое алгебраическая топология. Алгебраическая топология, если сказать попросту, это «исчисление дыр». На этом рисунке между точками А и B есть нульмерная дыра. Чтобы соединить точки А и B вы должны построить одномерный мост. При этом можно исчислять дырки. Вы мост переходите в одном направлении, поэтому дыра, как говорят математики, ориентирована. На этом чертеже показано, как можно складывать дырки. Если вы дырку А–B сложите с дыркой B–С – получите дырку С–А. Это теория нульмерных дырок.

Пожалуйста, следующий слайд. На этом торе я поясню вам теорию одномерных дырок. На верхнем торе вы видите две одномерных дырки. У одной край – красная линия, у другой – зеленая линия. Почему это дырка? Потому что, скажем, красный контур вы не можете стянуть в точку, двигаясь только по поверхности тора. Дырки можно складывать. Что значит, прибавить красную дырку саму к себе? Это значит два раза обойти ее в нужном направлении. А если вы возьмете трехкратную красную дырку и двукратную зеленую и сложите их, получится красивый трилистник на поверхности тора.

Так вот, бывают дырки двумерные, n-мерные, любой размерности. Это называется гомологиями. А функции на дырках являются когомологиями. Топологическую форму тела, если не принимать во внимание ее метрические размеры, можно довольно точно описать, сказав, какие дырки имеются и какой размерности. Этими данными можно описать топологию многомерной поверхности или, как мы говорим, многообразия.

А теперь давайте перейдем к нелинейным дифференциальным уравнениям и квантовой физике. Так вот, функции на дырках называются когомологиями. И если вы возьмете пластинку из какого-то металла и начнете ее сгибать, вы можете себе представить, что там образуются инфинитезимальные дырки. В зависимости от материала эти инфинитезимальные дырки будут разной формы, и они, эти дырки, описываются когомологиями типа Спенсера. Язык вторичного дифференциального исчисления когомологичен: он исчисляет эти инфинитезимальные дырки. Тут есть чему удивиться: элементарные частицы и исчисление бесконечно малых дыр!?

Теперь представьте себе, что я вам это рассказал, и вы что-то почувствовали. И теперь на этой базе мы начнем развивать точную науку? Не получится. Нужна все-таки очень аккуратная формализация. Нужно создать язык, сделать из него исчисление. Замечательно, что если мы будем рассматривать один аспект проблемы, получится язык для нелинейных уравнений. А если другой, так сказать, «социальный» аспект – это будет квантовая физика.

А.Г.У этого нового языка есть название?

А.В.Вторичное дифференциальное исчисление. А та небольшая часть физики, где он только-только начал использоваться, сейчас называется когомологической физикой. Но пока еще только очень ограниченное число людей это знает и над этим работает.

В оставшееся время я хотел бы попросить показать 14-й слайд. Я вам хочу задать вопрос: вы хорошо видите эти два текста?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Диалоги (сентябрь 2003 г.)»

Представляем Вашему вниманию похожие книги на «Диалоги (сентябрь 2003 г.)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Гордон - Диалоги (март 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (декабрь 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (август 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (апрель 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (июль 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (июнь 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (май 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (октябрь 2003 г.)
Александр Гордон
Александр Гордон - Диалоги (ноябрь 2003 г.)
Александр Гордон
libcat.ru: книга без обложки
Александр Гордон
Александр Гордон - Историки железного века
Александр Гордон
Отзывы о книге «Диалоги (сентябрь 2003 г.)»

Обсуждение, отзывы о книге «Диалоги (сентябрь 2003 г.)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x