Так почему же у нас их всего двадцать? Один из способов разобраться в этом вопросе — попытаться искусственно получить организм, способный производить не двадцать аминокислот, а двадцать одну. В 2001 г. Питер Шульц из Научно — исследовательского института Скриппса в Ла- Хойя (Сан — Диего, Калифорния) с коллегами сделал именно это — естественно, на основе E. coli. Как и все остальные живые организмы, E. coli использует генетический код, в котором каждые три нуклеотида в составе ДНК кодируют одну аминокислоту. Существует 64 триплета, или, как их называют, кодона, большая часть которых у E. coli используется регулярно. Но Шульц с коллегами обнаружили один кодон, который используется очень редко. Они модифицировали E. coli таким образом, что этот редкий кодон теперь отдавал команду добавить в строящуюся молекулу белка необычную аминокислоту.
Журнал Science назвал это достижение «первой искусственной формой жизни, химия которой не похожа ни на что, встречающееся в природе». В дальнейшем ученые добавили в репертуар E. coli еще более 30 необычных аминокислот. Первоначально бактерия могла строить эти новые белки только при условии бесперебойного снабжения ее нестандартными аминокислотами, но затем ученые начали модифицировать E. coli так, чтобы она могла сама синтезировать их из обычной пищи.
Благодаря этим исследованиям споры о генетическом коде переместились на другую почву. Никто не может с уверенностью утверждать, что только те самые 20 аминокислот делают жизнь возможной. Некоторые даже считают, что генетический код — это всего лишь исторический артефакт. Первые живые организмы синтезировали свои белки из тех аминокислот, которых вокруг было больше всего, и этот случайный выбор закрепился навсегда. Некоторые ученые уверены, что у нас самый лучший генетический код из всех возможных — ведь он позволяет хранить информацию о максимальном количестве белков в минимальном числе генов. Другие возражают, что естественный отбор мог бы предпочесть генетический код и поустойчивее, с меньшей вероятностью возникновения летальных мутаций, при которых происходит синтез белков с полностью измененной структурой.
В наших руках, однако, правила генетического кодирования изменились. Шульц и другие исследователи теперь пытаются разобраться, какую практическую пользу можно извлечь из белков E. coli, которых нет в природе. Возможно, такие белки позволят E. coli исправить одну из крупнейших неудач генной инженерии. Дело в том, что, в отличие от бактерий, клетки эукариот модифицируют белки, присоединяя к ним углеводные компоненты. Они участвуют в процессе сборки белка и влияют на его функционирование. E. coli может синтезировать точные копии наших белков — все аминокислоты точно на местах, — но если она не в состоянии добавить в нужных местах эти углеводы, то получившиеся белки для нас бесполезны.
Шульц с коллегами нашел способ обойти эту проблему. Вместо того чтобы добавлять углеводы к готовому белку, они добавляют их к отдельным аминокислотам, а затем так модифицируют E. coli, чтобы она распознавала аминокислоты с углеводным компонентом. Таким образом, бактерия может собирать белки с уже присоединенными углеводами, готовые для употребления человеком. Оказывается, то, что неестественно для E. coli, совершенно естественно для нас.
Генная инженерия, которая на первый взгляд производит впечатление науки будущего, на самом деле достаточно примитивна и основана на биологических представлениях 1950–х гг. В мире генной инженерии E. coli и другие бактерии — всего лишь простые химические фабрики, выпускающие определенный набор белков. Достаточно изменить один ген, и один из производимых белков тоже изменится. Специалисты прекрасно понимают, что жизнь ни в коем случае не сводится к производству белков. Существуют еще, к примеру, репрессоры и промоторы, чья задача — включать и выключать гены. Но многие специалисты в области генной инженерии используют эту ценную информацию только для того, чтобы улучшить производительность E. coli и других организмов.
Возможен и другой взгляд на E. coli: бактерию можно рассматривать как управляющую схему или сетевую структуру. Ее белки и гены работают согласованно, позволяя микроорганизму получать и обрабатывать информацию, принимать решения, поддерживать устойчивое существование в нашем неустойчивом мире. Мощь управляющей сети E. coli обеспечивается суммой ее частей, а не одним, каким‑нибудь геном или белком. Заметим также, что искусственные, рукотворные устройства человек постоянно улучшает — инженеры перерабатывают старые схемы, добавляют новые части. И некоторые ученые уже задаются вопросом: если жизнь тоже придерживается инженерных принципов, то, может быть, и ее можно доработать?
Читать дальше
Конец ознакомительного отрывка
Купить книгу