Большинство ярких рентгеновских источников — это двойные звездные системы. Одна звезда в системе — обычная. А вторая — релятивистская: нейтронная звезда или даже черная дыра. Мы говорили, что звезды, эволюционируя, «худеют», теряют вещество. В двойной системе звезда теряет массу охотнее — ведь рядом находится другая звезда, и ее тяготение буквально «выдирает» вещество с поверхности звезды-соседки. Возникает поток плазмы — струя течет от обычной звезды к релятивистской. Около релятивистской звезды образуется нагретый до миллионов градусов газовый диск, где и возникает рентгеновское излучение.
И вот что важно. Если нейтронная звезда одиночна (как, например, южная звезда в Крабовидной туманности), то измерить ее массу прямыми наблюдениями невозможно — современная астрономия таких методов не знает. Иначе обстоит дело, если нейтронная звезда входит в двойную систему. Законы Кеплера связывают период обращения звезд в двойной системе, расстояния между звездами и их массы. Период обращения звезд друг около друга надежно и очень точно определяется из наблюдений. Например, в системе рентгеновского источника Геркулес Х-1 нейтронная звезда, обращаясь около звезды обычной, каждые 1,7 суток скрывается за ней. Происходит затмение рентгеновского источника. Значит, и период обращения звезд в этой системе равен именно 1,7 суток. Теперь можно оценить и массы звезд. По современным данным, нейтронная звезда здесь имеет массу 1,3–1,5 массы Солнца. Такая же нейтронная звезда находится в системе Центавр Х-3 и, видимо, в знаменитой системе Скорпион Х-1, первом из открытых рентгеновских источников.
А вот в системе Лебедь Х-1 нейтронной звезды, по-видимому, нет. Дело в том, что релятивистская звезда здесь имеет массу не менее 3 масс Солнца. Нейтронная звезда не может быть такой массивной! Так утверждает теория. Значит, здесь черная дыра? Астрофизики все больше склоняются к мнению, что так оно и есть. Но сомнения все же остаются, потому что все аргументы — косвенные. Да, масса релятивистского компонента велика. Но, может, теория все-таки ошибается? Существуют работы, согласно которым нейтронная звезда может обладать массой до 5 масс Солнца. Да, рентгеновский источник Лебедь Х-1 обладает странной особенностью — его излучение испытывает хаотические колебания яркости, меняясь за очень короткое время — сотые доли секунды. Это совсем не характерно для нейтронной звезды-пульсара, но похоже на то, как должен излучать газ вблизи от черной дыры. Но и это лишь косвенная улика! И все же астрофизики почти уверены в том, что в системе Лебедь Х-1 находится черная дыра.
Что ж, обнаружить и старую нейтронную звезду, давно переставшую быть пульсаром, и даже черную дыру можно, если они находятся в двойной системе, если они «вытягивают» к себе вещество звезды-соседки. Увидеть мы можем, но речь идет о том, чтобы узнать — сколько их, этих старых нейтронных звезд и этих загадочных черных дыр. Ведь мы взялись ответить на вопрос: как часто они образуются? Всегда ли при взрывах сверхновых? Пульсары нам ответа не дали — слишком ненадежны, неточны числа. Не помогут и рентгеновские двойные системы — здесь статистика еще хуже, очень многое приходится оценивать «на глазок»… Так и не могут астрономы-наблюдатели даже через двадцать лет после открытия пульсаров ответить на простой, казалось бы, но очень каверзный вопрос, заданный Ф. Цвикки более чем полвека назад.
* * *
Если не могут помочь наблюдения, может быть, обратиться к теории?
Теорию вспышек массивных звезд как сверхновых начали впервые разрабатывать в 1966 году У. Фаулер и Ф. Хойл. Их коллеги С. Колгейт и Р. Уайт продолжили исследования, рассмотрев, как могут взрываться менее массивные звезды — до 1,5 массы Солнца.
Вы еще не забыли о противоречии, о котором говорилось в начале этой главы? Коллапс протекает очень быстро — за минуты или даже секунды должна выделиться энергия до 10 53эрг. Но такая большая энергия не может выделиться так быстро. Нам неизвестен механизм, который мог бы отобрать у звезды и рассеять в пространстве 10 53эрг энергии за считанные секунды! Как избавиться от противоречия? Либо отказаться от быстрого коллапса, либо придумать «холодильник», который отбирал бы у звезды излишки энергии и рассеивал их. Оставлять энергию в коллапсирующем ядре звезды нельзя — огромные, в сотни миллиардов градусов, температуры замедлят коллапс и могут даже остановить его, а нам это вовсе ни к чему. Что делать?
Читать дальше