Недавно один художник в разговоре со мной с юмором заметил, что современные ученые едва ли не чаще, чем современные художники, объявляют своей целью красоту. Конечно, художники не отказались от эстетических критериев, но тем не менее часто говорят об открытиях и изобретениях при обсуждении своих работ.
Но, несмотря на значение, которое многие ученые придают элегантности, они нередко по–разному оценивают ее. Точно так же,, как вы с соседом можете не сойтись во мнениях относительно какого‑нибудь современного художника, такого как Дэмьен Херст, разные ученые по–разному воспринимают одни и те же аспекты своей науки.
Я, как и мои единомышленники, предпочитаю искать фундаментальные принципы, которые раскрывали бы связи между совершенно независимыми на первый взгляд наблюдаемыми явлениями. Большинство моих коллег занимается тем, что разбирает при помощи конкретных разрешимых теорий и связанного с ними сложного математического аппарата так называемые модельные задачи (то есть задачи, не связанные с реальными физическими условиями). Возможно, позже эти задачи (и решения) найдут себе применение в связи с какими‑то наблюдаемыми физическими событиями, а может быть, и нет. Другие физики предпочитают сосредоточиться на одних только теориях с четким и элегантным аппаратом; такие теории дают множество экспериментальных прогнозов, которые можно систематизировать и просчитывать.
Интересные принципы, высшая математика и сложные численные модели — все это составные части физической науки. Большинство ученых ценит их все, но каждый из нас выбирает собственные приоритеты исходя из того, что ему больше всего нравится делать — или какой путь с наибольшей вероятностью приведет к научным результатам. В самом деле, часто мы выбираем свой подход в соответствии с тем, какой метод лучше всего соответствует нашим уникальным склонностям и талантам.
Представления о красоте меняются со временем, и не только в искусстве. Собственная специализация Мюррея Гелл–Манна — квантовая хромодинамика — хороший тому пример.
Выводы Гелл–Манна о законах сильного взаимодействия были сделаны на основании блестящей догадки о том, как организовать множество частиц, которые в 1960–е гг. открывали одну за другой, в разумную структуру, которая объяснила бы их многочисленность и разнообразие. Он предположил существование еще более фундаментальных элементарных частиц, известных сегодня как кварки, обладающих новым видом заряда — цветовым. В этом случае ядерному взаимодействию должны быть подвержены все объекты, обладающие этим зарядом; оно же должно удерживать кварки с образованием нейтральных объектов — точно так же, как электрическая сила связывает электроны с заряженными ядрами в нейтральные атомы. Если это так, то все открываемые частицы можно рассматривать как связанные состояния этих кварков — как составные объекты с нулевым суммарным цветовым зарядом.
Гелл–Манн понял, что если существует три типа кварков, каждый со своим цветовым зарядом, то из них сможет образоваться множество нейтральных («белых») связанных состояний. И это множество состояний должно соответствовать (и действительно соответствует) массе частиц, которые ученые находили тогда едва ли не каждую неделю. Таким образом, Гелл–Манн нашел красивое объяснение тому, что прежде казалось необъяснимым хаосом всевозможных частиц.
Однако, когда Мюррей и независимо от него физик (а позже нейробиолог) Джордж Цвейг опубликовали свою идею, многие даже не восприняли ее как настоящую научную теорию. Физика элементарных частиц исходит из того, что частицы на большом расстоянии не взаимодействуют — как следствие, мы можем рассчитать конечные эффекты взаимодействий, которые возникают при сближении. В таком контексте любое взаимодействие можно полностью представить как влияние локальных сил, которые проявляются лишь тогда, когда взаимодействующие частицы сближаются.
В то же время сила, о которой писал Гелл–Манн, становилась тем сильнее, чем дальше частицы находились друг от друга. Это означало, что кварки взаимодействуют всегда, даже если расстояние между ними очень велико. По общепринятым тогда критериям догадка Гелл–Манна не подходила даже на роль теории, которую можно использовать для достоверных вычислений. Поскольку кварки взаимодействуют всегда, любое их состояние — даже так называемое асимптотическое, когда кварк находится на значительном удалении от любого объекта — описывается очень сложно. И асимптотические состояния, постулированные в новой теории, были вовсе не тем же самым, что простые частицы, которые хотелось бы видеть в результате теоретического расчета. Разве это не отказ от красоты в пользу уродства?
Читать дальше
Конец ознакомительного отрывка
Купить книгу