Итак, с описанной только что точки зрения, любая звезда — это раскаленный плазменный шар. Бушующие в ее недрах термоядерные реакции играют двоякую роль: во-первых, поддерживают давление и температуру, чтобы звезда не схлопнулась под действием собственной гравитации, как завещал великий Эйнштейн, а во-вторых, снабжают ее тяжелыми элементами. Накопление тяжелых элементов (а без них невозможно возникновение планет земного типа и, по-видимому, жизни) наиболее активно происходит в массивных звездах.
Каждую секунду Солнце становится легче на 4 млн т. Это вещество просто сгорает.
И тут опять спасибо нашему Солнцу! Не случайно на протяжении всей своей истории люди поют ему дифирамбы. Расход водородного топлива, поддерживающий термоядерные реакции синтеза в недрах, неодинаков у разных звезд. Звезды, сравнимые с Солнцем по массе, живут весьма экономно, поэтому запасов водорода им хватит надолго. Красные карлики еще более бережливы. Поэтому и проживут вдвое, а то и втрое-вчетверо дольше даже Солнца. А вот массивные звезды — другое дело: они сжигают свое ядерное водородное топливо весьма расточительно. Поэтому самые тяжелые из них будут находиться на главной последовательности лишь несколько миллионов лет. Что ж, неумеренная жизнь в молодости приводит к ранней старости…
А что такое звездная старость? Это когда выгорает почти весь водород в ядре. Что же происходит тогда? Ядро звезды начинает съеживаться, а его температура стремительно растет. В результате формируется очень плотная и горячая область, состоящая из гелия с небольшой примесью более тяжелых элементов. Газ в подобном состоянии называется вырожденным. В центральной части ядра ядерные реакции практически останавливаются, но довольно активно продолжают протекать на периферии. Звезда быстро разбухает, ее размеры и светимость значительно увеличиваются. Она сходит с главной последовательности и превращается в красный гигант с температурой поверхности около 3000 градусов Кельвина.
Хорошо, пусть водорода уже нет, но есть еще гелиевые термоядерные реакции. В центральных областях распухшей звезды гелий продолжает трансформироваться в углерод и кислород вплоть до самых тяжелых элементов. Но вот гелий тоже заканчивается. И здесь снова все решает первоначальная масса звезды. Если она была небольшой, вроде нашего Солнца, внешние слои сбрасываются, образуя планетарную туманность (разлетающееся облако газа), в центре которой загорается уже знакомый нам белый карлик — горячая звезда размером примерно с Землю и с массой порядка массы Солнца. Средняя плотность вещества белого карлика составляет 106 г/см 3.
Белый карлик — это, по сути, умершая звезда. Все ядерное топливо сожжено, никаких реакций. Но объект продолжает излучать, а давление внутри него все еще с успехом противостоит собственной гравитации. Откуда это давление берется? Здесь вступают в дело уже знакомые нам своей парадоксальностью законы квантового мира. Под действием гравитации вещество белого карлика уплотняется настолько, что атомные ядра буквально втискиваются внутрь электронных оболочек соседних атомов. Электроны утрачивают интимную связь со своими родными атомами и начинают свободно путешествовать в межатомных пустотах по всему пространству звезды, в то время как голые ядра образуют устойчивую жесткую систему — некое подобие кристаллической решетки. Такое состояние называется вырожденным электронным газом, и хотя белый карлик продолжает остывать, средняя скорость электронов не уменьшается. Квантовая теория говорит, что электроны в электронном газе будут двигаться очень быстро. Такое квантово-механическое движение никак не связано с температурой вещества, оно создает давление, называемое давлением вырожденного электронного газа. И вот как раз эта сила уравновешивает у белых карликов силу собственной гравитации.
Постепенно остывающие образования, внутри которых весь водород выгорел, а ядерные реакции прекратились… Между прочим, в отдаленном будущем такая участь постигнет и Солнце. Примерно через 5–6 млрд лет наша родная звезда сожжет весь водород и превратится в красного гиганта. Его светимость вырастет в сотни раз, а радиус — в десятки. Жить на Земле в это время будет не слишком комфортно, так как температура у поверхности станет порядка 500 °C, а атмосфера сгорит. Так наше светило проживет несколько сотен миллионов лет, а потом сбросит периферийные оболочки и станет белым карликом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу