Получается, что гравитация — это как бы реакция пространства-времени на присутствие в нем массивных тел, а не таинственная сила, заключенная в самих телах. Когда пространство-время плоское, то и никакой гравитации нет. Но плоским оно может быть только в том случае, если внутри нет никаких объектов, обладающих массой. Если хотя бы один такой объект появляется, пространство-время искривляется, и при помещении в него еще какой-нибудь массы дело будет выглядеть так, как будто два массивных тела притягиваются друг к другу взаимным гравитационным притяжением.
Искажение геометрии пространства-времени массивным телом часто объясняют на одном классическом примере: представьте себе тяжелый предмет, лежащий на горизонтально натянутом мягком резиновом коврике. Поверхность резины искривляется вблизи предмета. Так и пространство-время искривляется вокруг массивного тела. Если вы попробуете сыграть в бильярд на этом резиновом поле, то обнаружите, что шары отклоняются на искривленной поверхности, особенно когда проходят вблизи больших масс. Важно заметить, что данная аналогия не идеальна: она иллюстрирует искривление только пространства, а не пространства-времени. Но суть идеи она передает хорошо.
Уравнения ОТО связывают геометрию пространства-времени и материальное наполнение Вселенной. В случае медленных движений и не очень сильных гравитационных полей эта теория повторяет закон тяготения Ньютона, который мы более или менее успешно изучаем в средней школе.
Из ОТО выводится много следствий, которые блестяще подтверждаются в ходе экспериментов. Однако, может быть, самая замечательная черта этой теории — то, как мало она требует экспериментальных предпосылок. Ключевой факт, который Эйнштейн положил в ее основу, — то, что движение тел под действием гравитации не зависит от их массы, — был известен уже Галилею. На этой скромной основе он построил теорию, которая в соответствующем предельном случае воспроизводила закон всемирного тяготения Ньютона и объясняла отклонения от этого закона. При этом ОТО не оставляет свободы выбора: представление гравитации как кривизны пространства-времени с неизбежностью ведет к уравнениям Эйнштейна. В этом смысле теория относительности не описывает, а объясняет гравитацию.
Логика теории была столь убедительна, а ее математическая структура столь изящна, что она просто обязана была оказаться верной. Выходило, что новая теория есть, по существу, самое убедительное доказательство самой себя. Обращаясь к своему старшему коллеге Арнольду Зоммерфельду, Эйнштейн писал: «Вы будете убеждены в правильности общей теории относительности, как только изучите ее. Так что я не собираюсь защищать ее ни единым словом».
Так что же такое Вселенная?
Альберт Эйнштейн был великим физиком. Великий физик отличается от обычного физика не просто эрудицией или компетентностью в математике (Эйнштейн, кстати, не был отличным математиком), а каким-то особым ви́дением и вкусом к глобальным, «общевселенским» вопросам. Эйнштейна мало интересовали «мелкие подробности» вроде положения и движения планет. Его теория гравитации — ОТО — дает возможность впервые в истории человеческого познания вести вполне научный разговор о Вселенной в целом! Можно сказать, что в рамках общей теории относительности открывается новый невиданный объект: «Вселенная как целое»! До сих пор в науке можно было рассматривать устройство тех или иных более или менее локальных областей мира. Но вопросы о мире как целом всегда отдавались на откуп философии, теологии или мифотворчества. Так было во времена Ньютона, во времена Галилея и ранее. Так было до Эйнштейна.
Конструируя с помощью ОТО теорию Вселенной в целом, Эйнштейн сделал три допущения. Первым было предположение о том, что материя распределена в космосе в среднем однородно. Конечно, во Вселенной существуют места, где концентрация звезд немного выше или ниже средней. Но в достаточно больших масштабах, как предполагал Эйнштейн, Вселенная с хорошей точностью может считаться однородной. Это, кстати, подразумевает, что наше положение в космосе ни в малейшей степени не является выделенным: все места во Вселенной более или менее одинаковы.
Эйнштейн также предположил, что Вселенная в среднем изотропна, то есть из любой точки она выглядит примерно одинаково во всех направлениях.
О третьем допущении нужно говорить особо. Оно состояло в том, что в среднем свойства Вселенной не меняются во времени. Иными словами, Вселенная статична или, как выражаются ученые, стационарна. Хотя у Эйнштейна не было наблюдательных подтверждений этого тезиса, картина вечной неизменной Вселенной казалась ему естественной и единственно возможной. Это было не физическое, а настоящее метафизическое допущение: просто представить дело как-нибудь иначе, что называется, «ум не поворачивался»! И в самом деле, какой же быть Вселенной в целом, как ни вечной, простирающейся без конца и края и неизменной?
Читать дальше
Конец ознакомительного отрывка
Купить книгу