На рисунке 2 показана часть спектра водорода и ртути. Длины волн заключены в интервале между 660 и 190 нм (нанометр – одна миллиардная часть метра). Видимый спектр соответствует диапазону частот 400- 700 нм. Чтобы найти частоты этих линий, нужно разделить скорость света (300000 км/с) на соответствующие длины волн. Результаты будут пропорциональны разности двух энергий. На заре атомной физики ученые стремились рассчитать величины этих энергий, которые зависели от определенных квантовых чисел, по известным разностям энергий. Вскоре стало очевидно, что получить все возможные разности энергий в ходе экспериментов нельзя. В результате были определены различные правила выбора, в которых фигурировали квантовые числа.
Рис. 2
В 1860 году немецкие ученые Кирхгоф и Бунзен показали, что с помощью дискретных спектров можно обнаруживать различные химические элементы – как сегодня можно идентифицировать товар по его штрихкоду. Для этого достаточно составить подробный каталог частот, соответствующих каждому элементу. Кроме того, чтобы понять, откуда берутся лучи спектра, потребовалось определить отношения между наблюдаемыми частотами не только в видимой части спектра, но и в инфракрасной и ультрафиолетовой. Число лучей в подобном «штрихкоде» может быть огромным: так, число линий атомного спектра железа достигает нескольких тысяч.
Простейшим атомным спектром является спектр атома водорода – он содержит всего четыре луча в видимой части. Длины волн этих лучей были измерены в 1884 году шведским ученым Андерсом Ангстремом. В следующем году в исследовании принял участие Иоганн Бальмер, швейцарский учитель математики, который преподавал в технических школах и женских учебных заведениях Базеля. Спустя более 20 лет после защиты докторской диссертации Бальмер получил хабилитацию, а с ней – право преподавать в университете. Ученый не раз говорил друзьям и коллегам, что если ему дадут любой ряд чисел, то он сможет найти формулу, связывающую их. Один из коллег предложил ему недавно полученные результаты измерений спектра водорода, и Бальмер справился с задачей. Его открытие вызвало еще больший интерес, когда другие ученые обобщили результат Бальмера и смогли полностью описать атомный спектр водорода. Спектральные «штрихкоды» постепенно начали упорядочиваться. Частоты спектральных линий пропорциональны обратным квадратам двух целых чисел. Описывающее их математическое выражение, известное как формула Ридберга, выглядит так:
где m и n – два целых числа (m < n), R – постоянная Ридберга.
Однако формула Бальмера не имела под собой никакой научной основы. Теперь расскажем, какую роль в зарождении квантовой физики сыграли целые числа.
Нумерология Бальмера
Каким образом Бальмер получил свою магическую формулу? Отправной точкой послужили четыре длины волны, выраженные в нанометрах:
656,21: 486,07 : 434,01: 410,12.
Сначала разделим все числа на наименьшее из них. Не будем записывать все десятичные знаки после запятой и приведем округленные результаты деления:
1,6:1,185:1,058:1.
Двоеточия означают, что речь идет об отношениях чисел. Теперь нужно как-то записать эти числа в виде рациональных дробей, то есть как частные двух целых. Предприняв несколько попыток, вы увидите, что если мы умножим все четыре числа на 9/8, то получим:
9/5:4/3:25/21:9/8.
Было бы удобнее, если бы знаменатели располагались в порядке возрастания. Для этого умножим второе и четвертое число на 4/4, то есть на 1. Новый ряд чисел будет выглядеть так:
9/5; 16/12; 25/21; 36/32.
Видите ли вы какую-либо закономерность, связывающую эти числа? От Бальмера не ускользнул тот факт, что их числители являются квадратами последовательных целых чисел (3,4,5,6), а знаменатели равны числителям, уменьшенным на 4, что можно записать как 2 в квадрате. Подведем итог: если каждой линии спектра поставить в соответствие целое число n, то длины волн будут пропорциональны дроби n²/(n² -2² ), где n принимает значения 3, 4 и так далее. Читатель может убедиться, что коэффициент пропорциональности равен 364,56 нм. Это выражение представляет собой всего лишь результат игры с числами, однако, как предположил Бальмер, его можно записать для других линий спектра, заменив 2² квадратами следующих целых чисел. Если рассмотреть частоты, которые, как известно, обратно пропорциональны длинам волн, то, с точностью до постоянного коэффициента, они будут описываться членами ряда 1/2² -1/n² .
Читать дальше