В немецком городе Линдау на Боденском озере с 1951 года проходят неформальные встречи нобелевских лауреатов и юных перспективных ученых со всего мира.
На фотографии изображены Бор, Гейзенберг и Дирак (слева направо)- участники встречи, прошедшей в 1962 году.
Гейзенберг с Хансом- Петером Дюрром обсуждают единую теорию поля.
Основные усилия Гейзенберг направил на создание единой теории поля. Эйнштейн также посвятил последние годы жизни попыткам построить единую теорию электромагнитного поля и поля тяготения. Обе эти попытки оказались неудачными. В чем же причина интереса к единой теории? После того как ученым удается связать непохожие на первый взгляд явления, за этим часто следует значительный прогресс в науке. К примеру, явления, происходящие на Земле, в частности падение предметов, и явления, которые происходят в космосе, к примеру движение планет Солнечной системы, объясняются одним и тем же законом всемирного тяготения. Таков итог мифической истории о яблоке и Ньютоне, которому, можно сказать, удалось создать первую единую теорию. В XIX веке стало понятно, что электричество и магнетизм подобны двум сторонам одной медали и порождаются электромагнитным полем. Эти явления удалось объединить с появлением уравнений Максвелла, а электромагнитные волны, предсказанные в этих уравнениях, были открыты в конце XIX века. Почти сразу после этого было изобретено радио.
С концептуальной точки зрения важно объяснить как можно больше явлений как можно меньшим числом гипотез. Именно по этой причине ведутся поиски единых теорий, однако это не означает, что подобные теории существуют. Эйнштейн пытался объединить свою общую теорию тяготения и электромагнетизм, однако ему, как и его последователям, это не удалось. Говоря о поле, мы имеем в виду функцию, описывающую некоторую величину, например силу тяжести, в любой точке пространства в любой момент времени.
Фундаментальные взаимодействия
Существует четыре фундаментальных взаимодействия: электромагнитное, гравитационное, сильное и слабое. Два первых наблюдаются на любом расстоянии между телами и частицами, сильное и слабое взаимодействие – лишь на микро-уровне, когда расстояния между частицами сопоставимы с размером атомного ядра.
1.Электромагнитное взаимодействие стало первым взаимодействием, описанным с помощью квантовой теории поля, которая одновременно была квантовой и релятивистской. В 1940-е годы была создана квантовая электродинамика, в которой взаимодействие между двумя частицами представлено как результат обмена фотонами. Примерно 20 лет спустя настала очередь слабого взаимодействия, которое было объединено с электромагнитным. Теперь эти два взаимодействия объединены общим названием электрослабого взаимодействия. В этой единой теории взаимодействие осуществляется посредством трех новых частиц: ИЛ, ИЛ и Z0 . Открытие этих частиц в 1980-е годы подтвердило правильность теории электрослабого взаимодействия.
2. Квантовая теория поля, описывающая сильные взаимодействия, называется квантовой хромодинамикой. Ее корректность была подтверждена множеством экспериментов начиная с 1970-х годов. В сильном взаимодействии участвуют кварки и частицы, состоящие из кварков, например протоны и нейтроны, которые обмениваются между собой другими частицами – глюонами. Было предпринято несколько попыток объединить квантовую хромодинамику и теорию электрослабого взаимодействия, однако поскольку в этих теориях рассматриваются колоссальные энергии, ни одну из них пока не удалось подтвердить экспериментально.
3. Гравитационное взаимодействие является самым слабым из всех фундаментальных взаимодействий, поэтому при изучении элементарных частиц им пренебрегают. Однако это взаимодействие наблюдается повсеместно и проявляется в виде сил притяжения на любом расстоянии. По этой причине гравитационное взаимодействие имеет огромное значение в космическом масштабе, хотя создать убедительную квантовую теорию тяготения до сих пор не удалось. Наиболее многообещающими в этом отношении являются теории суперструн, впрочем, до создания окончательной теории еще очень далеко.
Читать дальше