Жозе Фаус - Наука. Величайшие теории - выпуск 3 - Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

Здесь есть возможность читать онлайн «Жозе Фаус - Наука. Величайшие теории - выпуск 3 - Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: Де Агостини, Жанр: Прочая научная литература, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку. В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность. Этот принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне хотелось бы думать, что Луна существует, даже если я на нее не смотрю».

Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
картинка 14

где n – главное квантовое число, R – постоянная Ридберга. Бор получил выражение

картинка 15

где m – масса электрона, е – его электрический заряд, h– редуцированная постоянная Планка.

В расширенной модели Зоммерфельда использовалось второе квантовое число, которое мы обозначили буквой l, принимающее значения от 1 до n. С помощью релятивистских поправок Зоммерфельд определил, что энергия стационарного состояния определяется как

Наука Величайшие теории выпуск 3 Гейзенберг Принцип неопределенности Существует ли мир если на него никто не смотрит - изображение 16

где α – постоянная тонкой структуры. Большее значение поправки, соответствующее квантовым числам n = 1 и l = 0, равняется 1 + α²/4 и равно 1,000013…, то есть примерно одной стотысячной.

Эффект Зеемана и модель каркаса атома

Спустя несколько недель после того, как Зоммерфельд допустил Гейзенберга на свои семинары, он предложил новому студенту задачу, которую не мог решить сам. В 1895 году голландский физик Питер Зееман (1865-1943) обнаружил, что в присутствии магнитного поля некоторые спектральные линии утраиваются. Появление дополнительных линий не зависело от анализируемого вещества и определялось магнитным полем. Этот эффект можно было объяснить с помощью законов классической физики, однако ученых интересовала его интерпретация в рамках обобщенной модели атома, предложенной Зоммерфельдом. Электрон, движущийся по замкнутой орбите, эквивалентен электрическому току в катушке, который, в свою очередь, порождает магнитное поле. Это магнитное поле взаимодействует с внешним магнитным полем, при этом энергия их взаимодействия зависит от угла между ними. Зоммерфельд предположил, что этот угол также описывается квантовыми законами и может принимать только дискретные значения, определяемые неким квантовым числом. Это число Зоммерфельд назвал магнитным числом и обозначил его буквой m. Таким образом, в магнитном поле энергия стационарного состояния зависела от трех квантовых чисел: n, l, m. Далее Зоммерфельд попытался рассчитать частоты перехода на основе разности энергий и сравнить их с наблюдаемыми линиями спектра.

Его метод был корректным, однако переставал работать, когда наблюдались другие удвоенные линии, положение которых определялось не только магнитным полем, но и исходным спектром. Это явление получило название аномального эффекта Зеемана. Его объяснение Зоммерфельд и поручил Гейзенбергу. В случае классического эффекта Зеемана достаточно было описать каждое стационарное состояние с помощью трех квантовых чисел (n,l, m), рассмотрев геометрию орбит электронов. Зоммерфельд перешел к рассмотрению четвертого квантового числа, которое назвал внутренним, и попытался представить спектральные термы в виде частного целых чисел так, чтобы их разность соответствовала результатам наблюдений. После нескольких безуспешных попыток он передал задачу Гейзенбергу, который начал обучение всего несколько недель назад. Для решения проблемы юноше требовалось изучить совершенно новую в то время квантовую теорию, а также основы физики.

Катушки с током в магнитном поле
Катушка по которой течет электрический ток ведет себя как магнитный диполь - фото 17

Катушка, по которой течет электрический ток, ведет себя как магнитный диполь, то есть аналогично стрелке компаса. На рисунке изображена прямоугольная катушка (впрочем, ее форма не имеет значения). Введем вектор →A, перпендикулярный плоскости катушки, длина которого будет равна площади катушки. Если через катушку течет ток силой l, дипольный момент катушки определяется как вектор →μ=l→A. Энергия взаимодействия с магнитным полем B равна скалярному произведению – →μ• →B, то есть μBcosα, где α – угол между векторами →μ и →B. Теперь рассмотрим электрон, который движется по круговой орбите радиуса r со скоростью T=2πr/v. Момент импульса электрона на орбите будет задаваться вектором →l = m→v•→r, перпендикулярным плоскости орбиты. Движение заряженного электрона по орбите будет эквивалентно электрическому току l=-е/Т в круговой катушке радиуса r. Магнитный момент будет обозначаться вектором, перпендикулярным плоскости катушки. Чтобы вычислить модуль этого вектора, нужно умножить силу тока l на площадь катушки πr² . Результат будет пропорционален моменту импульса электрона и может быть записан так:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?»

Представляем Вашему вниманию похожие книги на «Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?»

Обсуждение, отзывы о книге «Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x