In the years that followed, Popov sought to engineer some of the most hazardous biological agents ever imagined. Using his earlier experience with the smallpox virus, he sought to create a pathogen that would deceive the victim. With genetic engineering, he hoped to create a deadly one-two punch: a first wave that would cause illness, followed by recovery, then a second wave that would be unexpected and fatal. It was a profoundly evil idea, to manipulate the very smallest building blocks of life, creating a germ that could not be stopped by remedies known to mankind. Nor was the idea his handiwork alone. It was the deliberate policy of the Soviet state.
The method Popov took was to construct a pathogen within a pathogen; the second one would deliver the deadly assault. He told Urakov he wanted to try five different microbes as the vehicle, or the first stage of the illness. Each of the agents was under control of a different group at the institute, and Popov would have to work with them all. The five were: Burkhholderia mallei , which causes glanders, an infectious disease primarily affecting horses; Burkholderia pseudomallei , which causes melioidosis, an infectious disease prevalent in tropical climates; Yersinia pestis , which causes plague; Bacillus anthracis , which causes anthrax; and Legionella , which leads to legionellosis, or Legionnaires’ disease. Although Popov was at the center of the research, thousands of people participated in it. The best and brightest graduates from Soviet universities were recruited for Obolensk. Each floor of the new building was outfitted for work on different pathogens. Popov scrutinized each for signs that it would make a good carrier. Anthrax didn’t work; plague was not good enough. Eventually, Popov found that only Legionella would succeed. The amount needed was small; a lethal dose was only a few Legionella cells. But there were technical obstacles; it wasn’t easy to grow enough Legionella to experiment with and, if weaponized, it would be very difficult to mass-produce.
For the second stage, Popov returned to the lessons of Koltsovo and his discovery there. He inserted into Legionella the genetic material that would cause the body to attack its own nervous system. Nerves are covered with a myelin insulation that helps them transmit impulses. Popov’s plan was to cause the body’s immune system to destroy the myelin. This would cause paralysis and, eventually, death. If the new genetically engineered pathogen worked, the victim would first come down with Legionnaires’ disease, a form of pneumonia. “Some of the infected would die, and some recover, absolutely recover. However, in two weeks the recovered person would develop paralysis and would die,” Popov explained. The paralysis and death were caused by the destruction of the myelin insulation. In effect, the body would wreck its own nervous system. “When your body tries to heal itself,” Popov said, “it actually does the reverse.”
“It was deceptive,” Popov said. “The first wave disease would disappear or would never be an acute disease. It could be a little bit of coughing, or nothing, you don’t feel it, that’s it. And then two weeks later, the disease would be hardly treatable, actually there would be no way to effectively treat it.”
The idea took him years to perfect. But the result was so terrible that when Popov saw what happened to guinea pigs during testing, he was overwhelmed with doubt. 2
On the bleak steppe of Kazakhstan, new workers streamed into the massive new factory at Stepnogorsk. By 1986, Ken Alibek, the chief of the anthrax assembly line, recalled that he supervised nine hundred people, and the Soviets had created “the most effective anthrax weapon ever produced.” He remembered working at a frenzied pace, spending all his days and nights in the laboratories. “I still shuddered occasionally when I looked at the bacteria multiplying in our fermenters and considered that they could end the lives of millions of people. But the secret culture of our labs had changed my outlook.”
The pressure-cooker environment took a heavy toll, and accidents happened every week. Once, he recalled, a technician was infected with anthrax. The man’s neck began to bulge, closing off his breathing. Antibiotics did not work. Within days, death seemed inevitable. At the last minute, they injected the man with a huge dose of anthrax antiserum and saved him. “The technician’s narrow escape drove home the potency of our new weapon,” Alibek recalled in his memoir. “Our powdered and liquid formulations of anthrax were three times as strong as the weapons that had been developed at Sverdlovsk.”
In 1987, the anthrax was tested on Vozrozhdeniye Island, according to Alibek. With the success of the tests, the old facility in Sverdlovsk, where the accident had occurred eight years earlier, was no longer needed. The massive new factory at Stepnogorsk was far superior. “Our factory could turn out two tons of anthrax a day in a process as reliable and efficient as producing tanks, trucks, cars or Coca-Cola,” Alibek said. “With the creation of the world’s first industrial-scale biological weapons factory, the Soviet Union became the world’s first—and only—biological superpower.” 3
But not everything was quite as efficient as Alibek claimed. Popov recalled that Stepnogorsk suffered “huge problems.” Among them, “People in charge were drunkards, and they didn’t care very much about what they did. The only requirement was that anthrax had to kill; they tested the product on animals. From the microbiological standpoint, they did a dirty work. As a result, the facility was very unproductive, and the results were often miserable—sometimes good, but sometimes they harvested no anthrax. The anthrax cells dissolved in the process we call phage lysis.” This is a virus that attacks the bacteria. “So, quite often the anthrax microbe just didn’t survive in those huge fermenters. And Biopreparat people often complained about it. They asked if we could help Alibek with his problem… They could not solve it. They thought the reason was the poor sterility of the components.”
Nonetheless, Alibek recalled, the larger goal was achieved. “Stepnogorsk demonstrated our ability to wage biological warfare on a scale matched by no other nation in history. We had taken the science of biowarfare further in the previous four years than it had traveled in the four decades since World War II.”
Alibek was promoted and transferred to Moscow in September 1987. After just a few months, he was given his first major assignment at Biopreparat headquarters. He was to supervise creation of a new smallpox weapon. He spent an afternoon reading over a top-secret document that he described as a five-year plan for biological weapons development, signed by Gorbachev in February 1986. The document carried a line for what kind of weapon, what kind of systems and when each would be tested between 1986 and 1990, he said. Among other things in the plan, Alibek saw a line for funding a 630-liter viral reactor to produce smallpox at Koltsovo. “Our military leaders,” he recalled in his memoir, “had decided to concentrate on one of the toughest challenges of bioweaponeering —the transformation of viruses into weapons of war.” He added, “Gorbachev’s Five Year Plan—and his generous funding, which would amount to over $1 billion by the end of the decade—allowed us to catch up with and then surpass Western technology.” 4
When Alibek visited Vector, the smallpox project was just getting off the ground. “Vector’s prize acquisition was the expensive new viral reactor authorized by Gorbachev’s decree,” he recalled. “Designed by one of our Moscow institutes… it was the first of its kind in the world. It stood about five feet high and was enclosed within thick stainless steel walls. An agitator at the bottom kept the mixture inside churning like clothes in a washing machine. Pipes led out in several directions, both for waste matter and weapons-ready material. A window on its convex roof allowed scientists to observe the viral culture at all times.”
Читать дальше