Некоторые виды рака являются, по крайней мере частично, наследственными – мутации в генах BRCA1 или BRCA2, к примеру, значительно увеличивают риск развития рака молочной железы [119], а эти мутации могут передаваться от одного поколения к другому. Другие виды рака могут быть связаны с мутациями, вызванными какими-то внешними триггерами – например, курением или воздействием радиации.
Многие мутации – особенно это касается соматических мутаций – не идут человеку на пользу. Это логично – биологические организмы, особенно организм человека, невероятно сложно устроены. Вместе с тем мутация, по определению, вовсе не обязательно должна быть плохой – это просто изменение. Именно за счет этого, как оказалось, прыгающие гены могут помогать людям двумя важными способами.
Прыгающие гены ведут себя чрезвычайно активно на ранних стадиях развития мозга – генетический материал почти беспорядочным образом вставляется по всему мозгу в рамках его нормального развития. Каждый раз, когда эти прыгуны меняют генетический материал клеток мозга, формально это является мутацией. И все эти генетические прыжки могут выполнять очень важную функцию – возможно, они помогают создавать разнообразие и индивидуальность, делающие каждый мозг по-своему уникальным. Эта безумная генетическая мешанина в процессе развития происходит только в головном мозге, потому что именно здесь индивидуальные особенности имеют свой смысл. Как ловко подметил ведущий автор исследования, в ходе которого был открыт этот механизм, профессор Фред Гэйдж: «Вам вряд ли бы понравилось добавление такой же индивидуальности к сердцу» [120].
Нейронная сеть головного мозга – это не единственная сложная система нашего организма, приветствующая разнообразие, – иммунной системе оно тоже идет на пользу. На самом деле наша иммунная система использует самую разношерстную рабочую силу в истории – без нее наш вид не смог бы протянуть так долго.
Чтобы противостоять потенциальной угрозе со стороны огромного количества разнообразных микроскопических паразитов, иммунная система человека использует более миллиона различных антител – специализированных белков, действие которых направлено против каждого из этих болезнетворных организмов. Механизм производства всех этих белков до конца еще не изучен – особенно если учесть, что количества наших генов явно недостаточно для того, чтобы его объяснить (как вы помните, у нас имеется всего порядка двадцати тысяч активных генов, а мы говорим о возможности существования более миллиона различных антител). Проведенное недавно исследование в Университете Джона Хопкинса связало механизм производства антител иммунной системы с нашими новыми друзьями – прыгающими генами.
Кирпичиками, из которых строятся все антитела, являются так называемые В-лимфоциты. Когда у нас появляется необходимость в производстве какого-то конкретного антитела, В-лимфоциты ищут инструкции для производства этого антитела в своей ДНК, хотя отдельные строчки инструкций обычно оказываются перемешаны с инструкциями для других антител. Они вырезают строки с инструкциями для других антител, связывая вместе то, что осталось, тем самым переписывая собственный генетический код и производя в процессе специализированный продукт. Этот процесс носит название V(D)J-рекомбинации.
Этот процесс выглядит похожим на механизм «вырезать и вставить», используемый некоторыми прыгающими генами, но есть одно ключевое отличие – V(D)J-рекомбинация соединяет оставшиеся кусочки инструкций не намертво, она оставляет между ними небольшую петлю. Ученым никогда не удавалось увидеть подобное в прыгающих генах, пока ученые из Университета Джона Хопкинса не обнаружили его у комнатной мухи – поведение ее гена под названием Hermes во многом напоминало V(D)J-рекомбинацию. Нэнси Крэйг, одна из ученых, участвовавших в этом исследовании, прокомментировала это следующими словами: «Поведение Hermes больше напоминает процесс, используемый иммунной системой для распознавания различных белков… чем у любых других прежде изученных прыгающих генов. Это является первым в своем роде настоящим доказательством того, что генетический процесс, лежащий за разнообразием [антител], мог эволюционировать из механизмов прыгающего гена, который, вероятно, был родственным гену Hermes» [121].
После того как организм выработает антитела против того или иного болезнетворного микроорганизма, эти антитела остаются у нас навсегда – что зачастую оказывается серьезным подспорьем в случае повторной атаки этими микроорганизмами. Иногда это способствует приобретению иммунитета к такой инфекции, как, например, бывает у большинства людей в случае с корью. Однако несмотря на то, что мутации в В-лимфоцитах остаются в нашем организме, мы не можем передавать их своим детям, потому что они находятся по соматическую сторону барьера Вейсмана.
Читать дальше
Конец ознакомительного отрывка
Купить книгу