Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности

Здесь есть возможность читать онлайн «Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.3. Простые числа. Долгая дорога к бесконечности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.3. Простые числа. Долгая дорога к бесконечности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

ПРОЕКТ GIMPS

Широкомасштабный интернет-проект по поиску простых чисел Мерсенна ( GIMPSGreat Internet Mersenne Prime Search ) начался по инициативе Джорджа Вольтмана и использует сеть соединенных через интернет персональных компьютеров добровольцев (любой желающий может зарегистрироваться). Эти компьютеры работают параллельно и в совокупности представляют собой вычислительные мощности, превосходящие возможности любого суперкомпьютера. Каждый доброволец устанавливает соответствующее программное обеспечение, и его компьютер выполняет вычисления в периоды простоя. Проект был запущен в 1997 г., а к августу 2009 г. было найдено в общей сложности 12 новых простых чисел Мерсенна. Фонд Электронных Рубежей ( EFFElectronic Frontier Foundation ) предложил приз в 150 тысяч долларов США за нахождение простого числа, состоящего по меньшей мере из 10 миллионов десятичных цифр. 23 августа 2008 г. приз был присужден Эдсону Смиту из Калифорнийского университета за нахождение числа 2 43112609— 1.

Логотип Фонда Электронных Рубежей Как определить является ли число - фото 104

Логотип Фонда Электронных Рубежей.

* * *

Как определить, является ли число простым

Единственный способ узнать наверняка — это разделить данное число на все предшествующие ему числа. Если оно не делится ни на одно из них, то оно является простым. Как мы видели в предыдущей главе, извлечение квадратного корня из числа может значительно сократить количество работы. Это хороший метод для небольших чисел и вычислений вручную. Например, мы хотим узнать, является ли число 101 простым или составным. Знание правил делимости может помочь нам избежать ненужной работы. Очевидно, что 101 не делится на 2, так как в противном случае его последняя цифра была бы четной или нулем. Не делится оно и на 3, так как сумма его цифр не делится на 3 (1 + 0 + 1 = 2). Также 101 не делится на 5, иначе оно оканчивалось бы на 0 или на 5. Мы также можем отбросить 4, 6 и 9, так как они кратны 2 или 3. Если мы попытаемся разделить 101 на 7, мы получим 14 и остаток 3. Значит, оно не делится и на 7. Следующее число, которое стоит проверить, — 11 (101, очевидно, не делится на 10). Деление на 11 дает 9 и остаток 2. Здесь мы можем остановиться и сказать, что 101 является простым числом, так как квадратный корень из 101 составляет примерно 10. Это означает, что наше число уже не будет делиться на любые другие оставшиеся числа, меньшие 101.

Этот метод называется перебором делителей и является самым простым и самым надежным. Проблема заключается в том, что он не оправдывает себя в случае очень больших чисел, даже если используется компьютер. Заметим, что для числа из 50 цифр потребуется проверка всех чисел длиной до 25 цифр, что более или менее соответствует корню из данного числа. Компьютеру, который способен выполнять миллиард операций деления в секунду, потребуется более 300 млн лет, чтобы закончить проверку, а к тому времени, вполне вероятно, человечество исчезнет с лица Земли!

Во всяком случае, этот метод работает достаточно хорошо для составного числа, если один из его делителей не является слишком большим. Следует иметь в виду, что для любого числа n вероятность того, что число 2 является одним из его делителей, составляет 50 %, а вероятность того, что делителем является число 3, составляет 33 % и так далее.

С другой стороны, скорость и объем памяти современных компьютеров значительно выросли, так что поиск простого числа в длинном списке иногда более эффективен, чем сложный процесс определения, является ли данное число простым.

Псевдопростые числа

В тестах простоты наиболее часто используется малая теорема Ферма. Напомним, что эта теорема гласит: «Если р — простое число, то не существует такого числа а у меньшего р ( а и р взаимно просты), что a p-1—1 дает при делении на р отличный от нуля остаток».

Теорема имеет ограничения, поскольку, как мы видели, она дает необходимое, но не достаточное условие. Например, если взять р = 7, мы видим, что З 6— 1 делится на 7. Нет никакой гарантии, что 7 — простое число (мы-то знаем, что это простое число, потому что взяли для примера небольшие числа, но мы должны представить, что имеем дело с большими числами). Однако если взять р = 8, мы видим, что при делении З 7— 1 на 8 получается 273,25, а значит, остаток не ноль. Теперь мы уверены, что 8 — не простое число (не находя его делителей).

Мы знаем точно, что любое число, которое не проходит тест с данным основанием а у является составным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.3. Простые числа. Долгая дорога к бесконечности»

Представляем Вашему вниманию похожие книги на «Мир математики. т.3. Простые числа. Долгая дорога к бесконечности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Павел Амнуэль - Простые числа
Павел Амнуэль
Отзывы о книге «Мир математики. т.3. Простые числа. Долгая дорога к бесконечности»

Обсуждение, отзывы о книге «Мир математики. т.3. Простые числа. Долгая дорога к бесконечности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x