Аналитическая машина также не была сконструирована полностью, на этот раз из-за возникших финансовых, политических и юридических проблем. Были разработаны лишь некоторые компоненты, в частности элементы арифметического устройства и системы печати. Ни память, ни программируемые компоненты созданы не были.
Компьютеры, сопоставимые по логическому устройству с этой машиной, были созданы лишь 100 лет спустя. Аналитическая машина была забыта всеми, за исключением некоторых изобретателей, на которых оказали влияние важнейшие понятия, сформулированные Бэббиджем в ходе работы над ней.
В 1903 году ирландский бухгалтер Перси Ладгейт спроектировал машину, схожую с машиной Бэббиджа, в которой на смену паровому двигателю пришел электромотор. Испанский инженер, математик и автор множества изобретений Леонардо Торрес Кеведо использовал идеи Бэббиджа при создании автоматической шахматной машины в 1911 году. Его машина была способна играть с человеком окончание шахматной партии с королем и ладьей против короля. Машина действовала не совсем точно, но всегда ставила мат за минимально возможное число ходов, неизменно одерживая победу в партии.
Позднее, в 1930-е годы, американский ученый Вэнивар Буш создал цифровой электрический компьютер и несколько машин для решения дифференциальных уравнений. Даже в первом электромеханическом компьютере Harvard Mark I, который был создан в период с 1939 по 1943 год американским инженером Говардом Хатауэем Эйкеном при поддержке IBM, 760000 зубчатых колес и 800 километров проводов были расположены по схеме, предложенной Бэббиджем.
Если бы аналитическая машина Бэббиджа была построена, в ней было бы 30 метров в длину, 10 метров в ширину и 4,5 метра в высоту. Сложение выполнялось бы за 3 секунды, умножение — от 2 до 4 минут, не считая времени, затраченного на ввод данных в арифметическое устройство — это заняло бы еще 2,5 секунды.
Чарльз Бэббидж также известен благодаря многим другим открытиям. Он взломал шифр Виженера (вариант шифра Цезаря), разработал приспособление, сбрасывающее посторонние предметы с путей перед локомотивом, а также сформулировал экономический «принцип Бэббиджа». Он также создал современную почтовую систему и был первым, кто указал, что ширина колец на спиле дерева зависит от погодных условий, что позволило изучить климат прошлых лет.
В области философии и богословия, которые он также не обошел стороной, ему не удалось достичь столь значимых успехов. Он был очень верующим человеком и в 1837 году опубликовал «Девятый трактат Бриджуотера» ( Ninth Bridgewater Treatise ), последовавший за восемью трактатами по богословию, издание которых было оплачено из наследства преподобного Фрэнсиса Генри, графа Бриджуотерского. Бэббидж пытался доказать существование Бога с позиций математики. Он писал, что Бог как высший законодатель создал законы или программы, согласно которым различные виды живых существ появлялись тогда, когда это было необходимо, и не вмешивался в земные дела напрямую. Он также доказывал возможность происхождения чудес с математической точки зрения, использовав методы теории вероятности. Его работы были написаны в то же время, что и труды Чарльза Дарвина(1809–1882) .
Логика и Джордж Буль
В 1847 году была опубликована книга «Математический анализ логики» ( Mathematical Analysis of Logic ) Джорджа Буля, в которой была представлена булева алгебра — попытка применить методы алгебры к логике первого порядка. В настоящее время булева алгебра в общем виде используется при проектировании электрических схем, однако изначально открытия Буля были признаны только узкими специалистами. Лишь в XX веке была понята их важность и возможность применения в информатике.
Большая заслуга в этом принадлежит американскому математику и инженеру Клоду Шеннону(1916–2001), который считается создателем теории информации. Шеннон познакомился с работой Буля на занятиях по философии в Мичиганском университете, и в 1937 году защитил магистерскую диссертацию в Массачусетском технологическом институте (MIT), показав, что булеву алгебру можно использовать для оптимизации электрических цепей. В 1935 году независимо от Шеннона логик Виктор Шестаков(1907–1987) из Московского государственного университета также использовал булеву алгебру в этих же целях.
Булева алгебра оказалась столь полезной в информатике потому, что она описывает идеальный сценарий с точки зрения двоичной логики. В ней используются только нули и единицы, основными операциями являются И, ИЛИ и НЕ, то есть конъюнкция (бинарная операция, обозначаемая
), дизъюнкция (бинарная операция, обозначаемая
) и отрицание (унарная операция, обозначаемая ¬). Эти логические операции определяются с помощью следующих таблиц истинности.
Читать дальше