Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Здесь есть возможность читать онлайн «Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.
По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 15. От абака к цифровой революции. Алгоритмы и вычисления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как и вавилонянам, грекам были известны шести десятеричные дроби, о чем упоминает Птолемей в своем «Альмагесте», однако в математических вычислениях греки использовали египетскую систему. В комментариях к трактату Архимеда Евтокий Аскалонский использует

Том 15 От абака к цифровой революции Алгоритмы и вычисления - изображение 35

для обозначения 1838 + 1/9 + 1/11, а

для обозначения 2 + 8/11 + 8/11 + 1/99 + 1/121.

Греки и число π

Геометрия в Древней Греции находилась на очень высоком уровне развития, и грекам удалось получить более точную оценку числа π , чем их предшественникам. Архимед доказал, что число π лежит в интервале 3 + 10/71 = 223/71 < π < 3 + 1/7 = 22/7 (что соответствует среднему значению 3,141851), а Птолемей получил приближенное значение, равное 3,141666. Эти значения были получены с помощью двух правильных многоугольников (вписанного и описанного).

Гоавюры посвященные Архимедуслева и Птолемеюсправа Архимед исходил из - фото 36

Гоавюры, посвященные Архимеду(слева) и Птолемею(справа).

Архимед исходил из того, что шестиугольник, вписанный в окружность единичного радиуса, имеет периметр, равный 6, а описанный шестиугольник — 4·√3. Следовательно, число π лежит в интервале от 3 до 2·√3. Он учитывал, что квадратный корень из 3 удовлетворяет следующему неравенству: 265/153 < √3 < 1351/780. Далее он перешел к правильным многоугольникам с большим числом сторон. Выбрав в качестве исходной фигуры шестиугольник, Архимед последовательно удваивал число его сторон, рассмотрев правильные многоугольники с 12, 24, 28 и 96 сторонами. С помощью правильного 96-угольника он получил приближенное значение 6336/(2017 + 1/4)< Я < 14688/(4673 + 1/2). Так как 3 + 10/71 < 6336/(2017 + 1/4) < π < 14688/(4673 + 1/2) < 3 + 1/7, он выбрал эти два значения в качестве границ интервала, в котором находится π . Птолемей рассматривал многоугольник с 360 сторонами.

Греки и простые числа

Простые числа — это натуральные числа, которые делятся только на единицу и сами на себя. Единица по определению не считается простым числом. Любое натуральное число можно представить в виде произведения простых чисел единственным образом (без учета перестановок множителей). Так, например:

120 = 5·3·2·2·2 = 2·5·2·2·3.

* * *

ПРОСТЫЕ ЧИСЛА, МЕНЬШИЕ 1000

Ниже перечислены простые числа, меньшие 1000. Они будут интересны тем, кто хочет проверить их знаменитые свойства, не затрудняя себя поиском.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997.

* * *

Греки изучили простые числа подробнейшим образом: они дали им определение и доказали их важнейшие свойства. Считается, что они были известны древним египтянам, однако не сохранилось никаких результатов, связанных с простыми числами, которые были бы получены предшественниками древних греков.

В 300 г. до н. э. Евклид, который работал в Александрии во времена правления Птолемея I (323–283 гг. до н. э.), в эпоху слияния египетского и греческого, обнаружил самое удивительное и важное свойство простых чисел. Он изложил его в своем трактате «Начала геометрии» — одном из важнейших трудов в истории математики. В нем заложены основы евклидовой геометрии, которая использовалась во всем мире на протяжении следующих двух тысяч лет. В предложении 20 книги IX «Начал» доказывается, что простых чисел бесконечно много.

Евклид рассматривает множество простых чисел S = { р 1, р 2 …, р n } и показывает, что число N = p 1 · р 2 ·… · р n + 1 не делится на р 1 , поскольку при делении на p 1 остаток равен 1. Аналогично N не делится на р 2 …., р n , так как при делении N на р 2 …, р n остаток будет равен 1. Следовательно, N либо простое, либо является произведением простых чисел, не содержащихся в S . Таким образом, множество S не содержит в себе все простые числа. Так как S было выбрано произвольно, конечного перечня простых чисел не существует. Как следствие, перечень простых чисел бесконечен.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»

Представляем Вашему вниманию похожие книги на «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»

Обсуждение, отзывы о книге «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x