Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика

Здесь есть возможность читать онлайн «Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 12. Числа-основа гармонии. Музыка и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 12. Числа-основа гармонии. Музыка и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса?
Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Том 12. Числа-основа гармонии. Музыка и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 12. Числа-основа гармонии. Музыка и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Шестой лад состоит из двух групп по шесть звуков тон тон полутон - фото 167

Шестой лад состоит из двух групп по шесть звуков (тон — тон — полутон — полутон) и допускает шесть транспозиций.

Седьмой лад состоит из двух групп по шесть звуков полутон полутон полутон - фото 168

Седьмой лад состоит из двух групп по шесть звуков (полутон — полутон — полутон — тон — полутон) и допускает шесть транспозиций.

Математика музыкальной формы Симметрия наблюдается не только в музыкальных - фото 169
Математика музыкальной формы

Симметрия наблюдается не только в музыкальных фразах и мотивах. Более сложные музыкальные структуры также могут обладать интересными математическими свойствами.

В формальном анализе музыкальных произведений изучается «музыкальная плоскость» — иными словами, составные части произведения и взаимосвязи между ними. Так как «музыкальную плоскость» можно изображать с разной степенью точности, в зависимости от «масштаба» можно получить общее представление, не содержащее нюансов, либо, напротив, в подробностях увидеть все детали, но не все произведение в целом.

ABCDE…

Рассмотрим музыкальные произведения издалека. Мы увидим крупные структуры, которые будем обозначать заглавными латинскими буквами. Здесь в качестве структурных элементов композиции мы будем рассматривать повторяющиеся или изменяющиеся фрагменты произведения. Композицию, в которой полностью повторяется единственная группа, будем обозначать так:

Том 12 Числаоснова гармонии Музыка и математика - изображение 170

Такие композиции обладают простой симметрией. Произведение, состоящее из двух полностью различных групп, напротив, не обладает какой-либо симметрией:

Том 12 Числаоснова гармонии Музыка и математика - изображение 171

Существуют ли произведения, симметричные с формальной точки зрения? Да, такие произведения существуют, более того, они встречаются очень часто. Примером может служить скерцо («игра») — произведение, которое обычно является частью другого, более крупного произведения, например симфонии. В качестве примера можно привести скерцо из Девятой симфонии Бетховена или скерцо из Симфонии № 4 Чайковского. По своей сути скерцо имеет вид АВ . Иногда после исполнения второй части первая повторяется заново, и композиция принимает вид:

Это простейшая симметричная фигура Части этой композиции могут повторяться и - фото 172

Это простейшая симметричная фигура. Части этой композиции могут повторяться и далее, образуя различные симметричные структуры:

Также существуют сложные формы состоящие из трех частей каждая из которых - фото 173

Также существуют сложные формы, состоящие из трех частей, каждая из которых также делится на три части. В результате образуются более крупные симметричные структуры:

Некоторые короткие произведения например вальс ор 34 1 Фредерика - фото 174

Некоторые короткие произведения, например вальс ор. 34 № 1 Фредерика Шопена(1810–1849) , обладают еще более широкой симметрией:

Чем длиннее произведение тем меньше вероятность наличия подобной симметрии - фото 175

Чем длиннее произведение, тем меньше вероятность наличия подобной симметрии. «Музыкальное приношение» Баха обладает формальной симметрией следующего вида:

Месса си минор Баха Иоганн Себастьян Бах самый изобретательный композитор - фото 176

Месса си минор Баха

Иоганн Себастьян Бах, самый изобретательный композитор всех времен, использовал в своих произведениях структуры, обладающие символическими и математическими свойствами. Его Месса си минор (Высокая месса) BWV 232, состоит из 27 частей, объединенных в четыре группы: Kyrie, Gloria, Credo и финальную, включающую в числе прочих части Sanctus, Hosanna, Benedictus и Agnus Dei . Композитор хотел изобразить Святую Троицу как в музыке, так и в числах.

Число 3 обозначает Святую Троицу. Общее число частей произведения (27), а также число частей в каждой группе (3 + 9 + 9 + 6) делится на три. Две центральных группы ( Gloria и Credo ) имеют симметричную структуру. Центр симметрии Gloria расположен в хоре Domine Deus («Господи Боже»). Центр симметрии Credo — в Crucifixus («Распятье»):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика»

Представляем Вашему вниманию похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика»

Обсуждение, отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x