Хоакин Наварро - Том 31. Тайная жизнь чисел. Любопытные разделы математики

Здесь есть возможность читать онлайн «Хоакин Наварро - Том 31. Тайная жизнь чисел. Любопытные разделы математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 31. Тайная жизнь чисел. Любопытные разделы математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 31. Тайная жизнь чисел. Любопытные разделы математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.

Том 31. Тайная жизнь чисел. Любопытные разделы математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 31. Тайная жизнь чисел. Любопытные разделы математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Лучшее — враг хорошего

Для чистокровного демократа из тех, что голосуют по любому поводу и верят, что их голос поможет изменить положение в обществе, идеалом является совершенная система голосования, удовлетворяющая определенным требованиям. Известны множество систем голосования (например, в Испании применяется метод д’Ондта), однако должна же существовать некая суперсистема, которая будет лучшей среди них. Ее предполагаемые характеристики, снабженные обширными комментариями, можно найти в интернете. Так как подробные описания различных систем голосования слишком объемны и скучны, не будем приводить их полностью. Ограничимся следующим указанием: идеальная система голосования, позволяющая принять общее решение на основе предпочтений отдельных лиц, должна соответствовать пяти разумным требованиям.

1. Отсутствие диктатуры: никакие личные предпочтения одного человека не могут влиять на остальных.

2. Индивидуальное упорядочение: каждый должен уметь упорядочивать свои предпочтения.

3. Единодушие: если все выбирают какой-то вариант, он является окончательным.

4. Единственность: результат голосования всегда будет одним и тем же, если предпочтения избирателей не меняются.

5. Независимость незначащих альтернатив: если исключить из голосования один вариант, остальные не изменятся.

Лауреат Нобелевской премии по экономике 1972 года Кеннет Эрроу(род. 1921) подробно изучил вышесказанные характеристики с точки зрения математики и вынес удивительный вердикт: не существует системы голосования, которая соответствовала бы всем указанным условиям. Она может соответствовать некоторым

из них, но не всем одновременно. «У каждого свои недостатки», как говорил герой

Билли Уайлдера в фильме «В джазе только девушки».

Красноречивое название

Американский математик Ив Нивергельт был автором работ о компьютерах, вейвлетах и статистике. Одна из его статей, опубликованная в 1987 году, стала настоящим бестселлером среди студентов, изучающих экономику и социологию. В ней, в частности, идет речь о математическом понятии эластичности.

Непосвященный напрасно будет пытаться понять, в чем же заключено очарование этой статьи: она полна формул с производными, логарифмами и другими математическими ужасами. Если вы прочитаете статью до конца, то узнаете, что курить — вредно, а антитабачные пошлины почти не влияют на курильщиков, однако позволяют выручить средства, которые затем направляются на борьбу с курением.

Также в статье рассказывается, что спрос на лосося, помимо прочих факторов, зависит от его относительной численности, от выживаемости икринок и молодых особей и так далее. Словом, вы узнаете много интересного о самых разных явлениях.

Не просто игра

Если какую-то игру и можно назвать царицей игр, то этого титула, несомненно, заслуживают шахматы. В них случайность никак не влияет на ход игры, а определяющее значение имеют чистая стратегия и память: число возможных ходов в партии имеет порядок 10 123— это невообразимая величина. Однажды чемпионом мира по шахматам стал профессиональный математик Эмануэль Ласкер(1868–1941) .

Сейчас мы говорим о стандартных шахматах на доске из 64 клеток, но еще в далекую викторианскую эпоху математик Артур Кэли(1821–1895) уже рассмотрел трехмерные шахматы, в которые сегодня играют персонажи сериала «Звездный путь».

Пока что никто не смог должным образом изучить эту игру — она слишком сложна даже для передовых методов современной теории игр. Но существует несколько ценных результатов: испанский инженер Леонардо Торрес Кеведо(1852–1936) в 1914 году сконструировал шахматный автомат, который всегда одерживал победу в окончании шахматной партии для трех фигур (король против короля и ладьи). Конечно, мы по-прежнему далеки от заветной цели — алгоритма, указывающего путь к победе в любой партии, но надо же с чего-то начать.

Машина под названием Турок сконструированная венгерским инженером - фото 49

Машина под названием «Турок», сконструированная венгерским инженером Вольфгангом фон Кемпеленомв 1769 году, произвела фурор. Казалось, что машина способна играть в шахматы, однако на самом деле она была искусной фальшивкой — внутри механизма прятался человек.

Шахматы — прекрасное поле битвы, можно даже сказать, первой битвы в вечном противостоянии человека и машины. Известно, что шахматные программы становятся все совершеннее, и сложно устоять перед соблазном столкнуть лицом к лицу гроссмейстера и такую программу. В 1996 году уже состоялся поединок между компьютером Deep Blue, созданным компанией IBM, и чемпионом мира по шахматам Гарри Каспаровым. Каспаров выиграл со счетом 3:0. Таким образом, в 1996 году человек опередил машину.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 31. Тайная жизнь чисел. Любопытные разделы математики»

Представляем Вашему вниманию похожие книги на «Том 31. Тайная жизнь чисел. Любопытные разделы математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 31. Тайная жизнь чисел. Любопытные разделы математики»

Обсуждение, отзывы о книге «Том 31. Тайная жизнь чисел. Любопытные разделы математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x