Саймон Сингх - Симпсоны и их математические секреты

Здесь есть возможность читать онлайн «Саймон Сингх - Симпсоны и их математические секреты» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Симпсоны и их математические секреты: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Симпсоны и их математические секреты»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.

Симпсоны и их математические секреты — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Симпсоны и их математические секреты», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Второй намек – пролетающие мимо Гомера цифры 7, 3 и 4. Это зашифрованная ссылка на компанию Pacific Data Images, которая занималась созданием сцен с компьютерной графикой. Цифры на поле набора телефона ассоциируются с буквами P, D и I, представляющими собой акроним названия компании.

Третий – проносящееся мимо космологическое неравенство ( ρ m 0> 3 H 0² / 8π G ), описывающее плотность вселенной Гомера. Составленное одним из близких друзей Коэна Дэвидом Шиминовичем, оно подразумевает высокую плотность, а это значит, что сила тяжести в итоге приведет к коллапсу вселенной, что на самом деле и происходит в конце истории.

Буквально перед исчезновением вселенной Гомера Коэн оставляет для проницательного зрителя особенно интригующий математический фрагмент. В сцене, показанной на приведенном выше рисунке, за левым плечом Гомера в несколько непривычном виде виднеется уравнение Эйлера. Оно также присутствует в эпизоде «ДеньгоБАРТ».

И наконец, в той же сцене за правым плечом Гомера можно увидеть соотношение P = NP. Хотя большинство зрителей даже не заметили бы его, не говоря уже о том, чтобы проанализировать, соотношение P = NP представляет собой ссылку на одну из самых важных нерешенных задач в теории вычислительных систем.

Утверждение P = NP касается двух классов математических задач. P означает polynomial , «полиномиальная задача», а NP – nondeterministic polynomial («недетерминированная полиномиальная задача»). Грубо говоря, задачи класса P легко решить, тогда как задачи класса NP трудно решить, но легко проверить. [51]

* * *

Например, умножение – это легкая задача, которая относится к классу P. Даже если умножаемые числа становятся больше, время на выполнение вычислений увеличивается умеренными темпами.

Напротив, разложение числа на множители (поиск его делителей) – задача класса NP. Она достаточно простая для малых чисел, но для больших становится практически невыполнимой. Например, если вас попросят разложить на множители число 21, вы сразу же найдете ответ: 21 = 3 × 7. Однако разложить на множители число 428 783 гораздо труднее. В действительности вам, возможно, понадобится около часа, чтобы с помощью калькулятора определить: 428 783 = 521 × 823. Важно то, что если бы вам дали числа 521 и 823, вы за несколько секунд смогли бы проверить, являются ли они делителями числа 428 783. Таким образом, разложение на множители – это классическая задача класса NP, поскольку в случае больших чисел ее трудно решить, но легко проверить.

Или… возможно, задача разложения на множители не так сложна, как нам кажется?

В этом случае перед математиками и программистами встает следующий фундаментальный вопрос: действительно ли задачу разложения на множители трудно решить, или мы просто не знаем способа, который бы нам позволил ее упростить? То же касается и множества других задач класса NP: они и правда настолько сложны, или все дело в нашем незнании более доступного варианта их решения?

Этот вопрос представляет собой нечто большее, чем обычный академический интерес, поскольку высокий уровень сложности решения задач класса NP лежит в основе некоторых важных технологий. Например, такие задачи используются в алгоритмах шифрования, опирающихся на предположении о том, что большие числа трудно разложить на множители. Однако если разложение на множители окажется не такой уж сложной задачей и кто-то найдет легкий способ ее решения, это разрушит системы шифрования, что, в свою очередь, поставит под угрозу всеобщую безопасность, от покупок в интернете до международных политических и военных контактов на самом высоком уровне.

Эту проблему часто описывают так: P = NP или P ≠ NP?. Другими словами, могут ли якобы сложные задачи (класса NP) однажды оказаться такими же легкими, как простые задачи (класса P), или нет?

Поиск решения загадки P = NP или P ≠ NP? входит в список самых востребованных математиками задач. Существует даже награда за ее решение. В 2000 году Математический институт Клэя, основанный филантропом Лэндоном Клэем в Кембридже, включил эту задачу в список семи задач тысячелетия, и назначил вознаграждение в 1 миллион долларов за окончательный ответ на вопрос: P = NP или P ≠ NP?.

Дэвид Коэн, который изучал задачи класса P и NP во время учебы в магистратуре Калифорнийского университета в Беркли, подозревает, что в действительности задачи класса NP гораздо проще, чем мы считаем. Именно поэтому соотношение P = NP появляется за плечом Гомера в трехмерной вселенной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Симпсоны и их математические секреты»

Представляем Вашему вниманию похожие книги на «Симпсоны и их математические секреты» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Симпсоны и их математические секреты»

Обсуждение, отзывы о книге «Симпсоны и их математические секреты» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x