Саймон Сингх - Симпсоны и их математические секреты

Здесь есть возможность читать онлайн «Саймон Сингх - Симпсоны и их математические секреты» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Симпсоны и их математические секреты: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Симпсоны и их математические секреты»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.

Симпсоны и их математические секреты — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Симпсоны и их математические секреты», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Уайлс мечтал решить теорему Ферма с десяти лет. Он был одержим этой идеей на протяжении трех десятилетий, а последние семь лет работал в обстановке полной секретности и в конце концов предоставил доказательство того, что уравнение x n + y n = z n ( n > 2) не имеет решений. Когда его опубликовали, оказалось, что оно занимает 130 страниц плотного математического текста. Это интересно отчасти потому, что иллюстрирует огромный масштаб достижения Уайлса, а еще потому, что его логические рассуждения слишком сложны, чтобы ими можно было оперировать в XVII столетии. В действительности Уайлс использовал столько современных инструментов и методик, что его доказательство теоремы Ферма не может быть тем подходом, который имел в виду сам Ферма.

Именно этот момент упоминался в 2010 году в телесериале BBC «Доктор Кто». В эпизоде «Одиннадцатый час» Мэтт Смит дебютирует в качестве регенерированного одиннадцатого Доктора, который должен доказать свою компетентность группе гениев, чтобы убедить их в необходимости принять его совет и спасти мир. Увидев, что эксперты уже готовы ему отказать, Доктору Кто говорит: «Да, я знаю, вы должны меня отключить, но прежде взгляните на это. Теорема Ферма. Доказательство. Я имею в виду – настоящее. Его никогда еще не видели». Другими словами, Доктор неявно признает факт существования доказательства Уайлса, но совершенно обоснованно не принимает его в качестве доказательства Пьера Ферма, которое считает «настоящим». Возможно, Доктор вернулся в XVII век и получил его у самого Ферма.

Итак, давайте подытожим. В XVII столетии Пьер Ферма утверждает, что у уравнения x n + y n = z n ( n > 2) нет решения в целых числах. В 1995 году Эндрю Уайлс находит этому доказательство и подтверждает заявление Ферма. В 2010 году Доктор Кто раскрывает настоящее доказательство Ферма. Все сходятся во мнении, что данное уравнение не имеет решений.

Таким образом, в эпизоде «Волшебник Вечнозеленой аллеи» Гомер как будто бросает вызов величайшим умам четырех столетий. Ферма, Уайлс и даже Доктор Кто считают, что уравнение Ферма нерешаемо, но Гомер все же пишет на доске следующее:

3987¹² + 4365¹² = 4472¹²

Вы можете проверить это уравнение сами с помощью калькулятора. Возведите число 3987 в двенадцатую степень. Прибавьте 4365 в двенадцатой степени. Возьмите корень двенадцатой степени из результата – и получите число 4472.

Во всяком случае именно такое число выдаст калькулятор, экран которого рассчитан только на десять разрядов. Однако если у вас есть более точный калькулятор, отображающий двенадцать или более цифр, то вы увидите иной ответ. Фактическое значение третьего члена уравнения ближе к следующему значению:

3987¹² + 4365¹² = 4472,0000000070576171875¹²

Так что же происходит? Уравнение Гомера – это так называемое самое близкое решение уравнения Ферма. То есть числа 3987, 4365 и 4472 очень близки к тому, чтобы удовлетворять уравнению Ферма, причем настолько близки, что погрешность практически незаметна. Тем не менее в математике решение либо есть, либо его нет. Самое близкое решение – это, по большому счету, вообще не решение, а значит, последняя теорема Ферма так и остается неопровергнутой.

Дэвид Коэн включил эту математическую шутку в сценарий в расчете на тех зрителей, которые оказались достаточно внимательными, чтобы заметить уравнение, и достаточно осведомленными, чтобы понять связь с теоремой Ферма. Доказательство Уайлса было опубликовано за три года до выхода этого эпизода в эфир в 1998 году, так что Коэн прекрасно знал, что теорему Ферма удалось одолеть. В каком-то смысле он даже имел к этому отношение, поскольку во время учебы в Калифорнийском университете в Беркли посещал лекции Кена Рибета, а именно Рибет предоставил Уайлсу важнейший инструмент для доказательства теоремы Ферма.

Безусловно, Коэну было известно, что теорема Ферма не имеет решений, но он хотел отдать дань уважения Пьеру де Ферма и Эндрю Уайлсу, отыскав настолько близкое к правильному решение, что оно проходило тест на простом калькуляторе. Для того чтобы найти это псевдорешение, Коэн написал компьютерную программу, которая анализировала значения x, y и z до тех пор, пока не отыскала максимально точное решение из возможных. В конце концов Коэн остановился на уравнении 3987¹² + 4365¹² = 4472¹², так как погрешность была мизерной: левая часть уравнения всего на 0,000000002 процента больше правой части.

Как только эпизод вышел в эфир, Коэн начал просматривать интернет-форумы в поисках информации о том, заметил ли кто-нибудь его шутку. И со временем нашел сообщение, в котором было сказано: «Я знаю, что это, по всей видимости, опровергает теорему Ферма, но я проверил эти цифры на калькуляторе, и они оказались правильными. Что, черт возьми, здесь происходит?»

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Симпсоны и их математические секреты»

Представляем Вашему вниманию похожие книги на «Симпсоны и их математические секреты» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Симпсоны и их математические секреты»

Обсуждение, отзывы о книге «Симпсоны и их математические секреты» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x