Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

– Прекрасная возможность для вас потренироваться в дедукции, Ватсап, – сказал он мне.

– Я вижу, что трава в этом месте потревожена, Сомс.

– Правильно, Ватсап. Следы весьма сложные, но в основном это многочисленные перекрывающиеся отпечатки лап… – он понизил голос, так что слышать его мог только я один, – карликового пуделя.

Дальше он вновь заговорил своим обычным голосом:

– Я не в состоянии разглядеть здесь места, где первоначально были положены шары, но, если я не ошибаюсь – а я этого никогда не делаю, – по следам ясно, что животное сдвинуло ровно четыре шара.

– Это существенно, мистер Сомс? – нервно спросила леди Баске́, держа на руках карликового пуделя.

Сомс посмотрел в мою сторону.

– Да… возможно… – начал я и увидел, что Сомс незаметно кивнул. Ну конечно, кивнул он не совершенно незаметно, вы понимаете, поскольку если бы кивок действительно был незаметен, я бы его не увидел. Поняв кивок Сомса как завуалированное одобрение, я рискнул сказать наугад: – Благодаря этому обстоятельству можно вычислить первоначальное расположение шаров.

– И что, правда можно? – спросила она с полным надежды взглядом.

Каким же было первоначальное расположение шаров? Ответ см. в главе «Загадки разгаданные».

Цифровые кубы

Это старая история, но она может послужить нам прелюдией к менее известному вопросу. Число 153 равно сумме кубов составляющих его цифр:

1³ + 5³ + 3³ = 1 + 125 + 27 = 153.

Существуют еще три трехзначных числа, обладающих таким же свойством, если не принимать во внимание такие числа, как 001, с начальными нулями. Сможете найти их?

Ответ см. в главе «Загадки разгаданные».

Самовлюбленные числа

Загадка с кубами приобрела некоторую известность потому, что в 1940 г. знаменитый математик Годфри Харолд Харди написал в книге «Апология математика» [6] Харди Г. Апология математика. – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. , что подобные головоломки не имеют никакой математической ценности, поскольку зависят от используемой нотации (в данном случае десятичной) и представляют собой всего лишь случайные совпадения. Однако, разгадывая такие загадки, можно почерпнуть немало полезных знаний в области математики, а обобщения (к примеру, расширение задачи на другие системы счисления, помимо десятичной) позволяют обойти вопрос нотации.

Один из вариантов этой головоломки – концепция самовлюбленного числа, которое определяется как число, равное сумме n -х степеней составляющих его десятичных цифр для некоторого n . Если речь идет о явно заданном n , используется термин n-совершенное число .

Четвертые степени цифр (4-самовлюбленные числа)

Будем записывать число, составленное из цифр a, b, c, d, как [ abcd ], чтобы отличать его от соответствующего произведения abcd . То есть [ abcd ] = 1000 a + 100 b + 10 c + d . Мы должны решить уравнение:

[ abcd ] = a 4+ b 4+ c 4+ d 4,

где все неизвестные являются целыми числами и лежат в диапазоне от 0 до 9. Эту задачу никак нельзя называть тривиальной. Попробуйте!

Ответ см. в главе «Загадки разгаданные».

Пятые степени цифр (5-самовлюбленные числа)

На этот раз задача состоит в том, чтобы решить уравнение:

[ abcde ] = a 5+ b 5+ c 5+ d 5+ e 5,

что, как несложно догадаться, еще труднее.

Ответ в главе «Загадки разгаданные».

Более высокие степени цифр (n-самовлюбленные числа для n ≥ 6)

Несложно доказать, что n -самовлюбленные числа существуют только для n ≤ 60, поскольку при любом n > 60 мы имеем 9 n < 10 n–1. В 1985 г. Дик Уинтер доказал, что существует ровно 88 самовлюбленных чисел с ненулевой первой цифрой. Для n = 1 в этой роли выступают все десять цифр (мы включаем сюда 0, потому что в данном случае это единственная цифра числа). Для n = 2 самовлюбленных чисел не существует. Для n = 3, 4, 5 см. ответы к разделу о цифровых кубах и две предыдущие задачи. Для n ≥ 6 получаем следующие числа:

Пифилология пиэмы и пиллиш Now I wish I could recollect pi Eureka cried - фото 15

Пифилология, пиэмы и пиллиш

Now, I wish I could recollect pi.

«Eureka», cried the great inventor.

Christmas pudding; Christmas pie

is the problem's very centre.

See, I have a rhyme assisting

my feeble brain,

its tasks sometimes resisting.

How I wish I could enumerate pi easily, since all these horrible mnemonics prevent recalling any of pi's sequence more simply.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x