Рафаель Роузен - Математика для гиков

Здесь есть возможность читать онлайн «Рафаель Роузен - Математика для гиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика для гиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика для гиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Математика для гиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика для гиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если подумать об этом, то становится понятно, почему автобусы могут подъезжать по несколько штук. Когда одному автобусу приходится долго ждать, пока все пассажиры сядут, например, некоторые садятся медленнее, чем остальные, или группа ждущих пассажиров сама по себе большая, то увеличивается время, за которое автобус доедет до следующей остановки для сбора пассажиров, а значит, их станет больше. Потом когда автобус наконец приезжает на эту следующую остановку, все эти люди еще дольше садятся в автобус, а это значит, что на следующей остановке также будет больше людей. Этот процесс в сущности только становится хуже.

В это время автобус, который едет за отстающим автобусом, подъезжает на остановку и видит, что там его ждет очень мало пассажиров. Это потому, что большая часть уехала на предыдущем автобусе (отстающем). Так как ждущих пассажиров меньше, автобусу не надо долго ждать, пока все в него сядут. Поэтому он может трогаться сравнительно быстро, тем самым уменьшается время до прибытия на следующую остановку. И пока отстающий автобус едет все медленнее и медленнее, следующий автобус едет все быстрее и быстрее. В конце концов, этот автобус догоняет отстающий автобус, и они оба продолжают ехать по маршруту вместе (если только отстающий автобус не решит проезжать остановки, чтобы увеличить расстояние между ними).

Скопление автобусов – это пример теории хаоса, раздела математики, который изучает, как небольшие изменения при первоначальных условиях могут привести к непредсказуемым результатам в конечном итоге. В этом случае небольшие изменения во времени, которое люди тратят на посадку в автобус, значительно влияют на позицию автобуса в сравнении с другими автобусами этого маршрута.

Эффект бабочки

Если вы слышали что-либо о теории хаоса, тогда вы, скорее всего, слышали и об эффекте бабочки. Впервые это понятие ввел математик Эдвард Лоренц в 1960-х. Он изучал погодные факторы и заметил, что маленькие отклонения в данных, которые вносят в модель прогнозирования погоды, имеют совершенно разные результаты. Согласно эффекту бабочки, ввод такой маленькой информации, как взмах крыла бабочки, может привести к такому резкому отклонению, как ураган.

22 Хватит просаживать деньги в казино Математическое понятие ошибка игрока - фото 57

2.2. Хватит просаживать деньги в казино

Математическое понятие: ошибка игрока

Вы любите азартные игры? Если любите, тогда вы могли сталкиваться с математикой, сами того не ведая, в форме ошибки игрока.

Давайте представим, что вы кидаете кости. Каждая игральная кость имеет шесть чисел: 1, 2, 3, 4, 5, 6 – поэтому вероятность выпадения каждой цифры равна 1:6. Допустим, что вы бросили кость десять раз. И представим, что у вас выпали следующие результаты:

Обычно люди думают что если цифра шесть еще не выпала то вероятность ее - фото 58

Обычно люди думают, что если цифра шесть еще не выпала, то вероятность ее выпадения в следующий раз выше, чем если бы она выпала, допустим, три раза во время предыдущих десяти попыток. «У меня еще не было шести, – кто-то может подумать про себя, – поэтому она выпадет в ближайшие попытки». Но на самом деле вероятность выпадения цифры шесть ничем не отличается от вероятности ее выпадения во время первых десяти попыток. Ошибка – это логический ход мысли, она кроется в мысли, что предыдущие попытки влияют на будущие. Даже если вы бросили кость сто раз, и цифра шесть так и не выпала, то вероятность ее выпадения в следующих ста попытках все равно остается 1:6.

Ошибку игрока еще называют ложным выводом Монте-Карло, это название, возможно, возникло в один из вечеров в казино Монте-Карло в августе 1913 года. В ту ночь в рулетке выпал черный цвет 26 раз подряд. В ходе игры все больше и больше игроков ставили на красный, так как были уверены, что чем больше раз выпадает черный, тем выше вероятность выпадения красного. Но, естественно, вероятность выпадения черного или красного не зависит от количества игр. Согласно вероятности выпадения, каждое новое вращение рулетки является первым.

Математики и статистики иногда описывают ошибку игрока как веру в то, что неодушевленные предметы – такие, как рулетка или игральные кости – имеют память. Такая вера выливается в убеждение, что, зная свое «поведение» в прошлом, неодушевленные предметы могут приспособить свое будущее «поведение» согласно этому. Но, естественно у этих предметов нет памяти; каждое вращение рулетки или бросок костей абсолютно независимы (в случае, если оборудование не настраивали специальным образом). Поэтому имейте это в виду, когда решите делать на что-то ставки!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика для гиков»

Представляем Вашему вниманию похожие книги на «Математика для гиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика для гиков»

Обсуждение, отзывы о книге «Математика для гиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x