Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками (ghosts) исчезнувших величин? [41] Дж. Беркли . Аналитик, или Рассуждение, адресованное неверующему математику… // Беркли Дж. Сочинения / Сост., общ. ред. и вступит. ст. И. С. Нарского; пер. А. Ф. Грязнова, Е. Ф. Дебольской, Е. С. Лагутина, Г. Г. Майорова, А. О. Маковельского. М.: Мысль, 1978. С. 425–426. Прим. М. Г.

Тем не менее исчисление бесконечно малых все-таки работает . Если вы раскрутите привязанный к веревке камень над головой, а затем резко отпустите его, он улетит по прямолинейной траектории с постоянной скоростью [42] При отсутствии воздействия силы тяжести, сопротивления воздуха и т. д. и т. п. Однако на коротком интервале времени такое линейное приближение является достаточно точным. в направлении, в котором, согласно расчетам, он движется в тот момент, когда вы его отпускаете. Это еще одна идея Ньютона: движущиеся объекты склонны перемещаться по прямолинейной траектории, если какая-то другая сила не заставляет объект отклоняться в ту или иную сторону. Это и есть одна из причин, почему линейное мышление настолько естественно для нас: интуитивное восприятие времени и движения формируется у нас под воздействием явлений, которые мы наблюдаем в окружающем мире. Еще до того, как Ньютон сформулировал свои законы, мы, люди, в глубине души знали, что все вокруг нас стремится двигаться по прямой, если только нет причин двигаться иначе.

Бесконечно малые приращения и ненужные затруднения

Критики Ньютона в чем-то были правы: его толкование производной далеко от того, что в наши дни принято называть строгой математикой. Проблема заключается в концепции бесконечно малой величины, которая на протяжении тысяч лет была для математиков камнем преткновения. Трудности начались с древнегреческого философа V столетия до нашей эры Зенона, представителя Элейской школы, который часто задавал по поводу физического мира на первый взгляд невинные вопросы, неизменно перераставшие в серьезные философские дискуссии.

Представляю вам самый знаменитый парадокс Зенона в вольном переложении. Я решаю сходить в магазин за мороженым. Конечно, я не смогу преодолеть весь путь до магазина, пока не пройду половину этого пути. А как только я пройду половину пути, я все равно не смогу добраться до магазина, пока не преодолею половину оставшегося пути. Когда я сделаю это, мне все равно предстоит преодолеть половину оставшегося расстояния – и так далее. Я могу подходить к магазину все ближе и ближе, но, сколько бы этапов этого процесса я ни прошел, на самом деле мне так и не удастся добраться до магазина. У меня всегда будет оставаться пусть крохотное, но все же ненулевое расстояние до моих двух шариков мороженого. Эта аргументация применима к любому другому пункту назначения: в равной мере невозможно перейти улицу, или сделать один-единственный шаг, или взмахнуть рукой. Любое движение исключено.

Говорят, что киник Диоген опроверг доводы Зенона довольно простым методом: он встал и прошел из одного конца комнаты в другой. Это весьма хороший довод в пользу того, что движение все же возможно, а значит, что-то не так с доводами Зенона [43] Самое время обратиться к Пушкину: Движенья нет, сказал мудрец брадатый. Другой смолчал и стал пред ним ходить. Сильнее бы не мог он возразить; Хвалили все ответ замысловатый. Но, господа, забавный случай сей Другой пример на память мне приводит: Ведь каждый день пред нами Солнце ходит, Однако ж прав упрямый Галилей. Прим. М. Г. . Но где же была ошибка?

Разбейте путь в магазин на фрагменты, представленные в числовой форме. Сначала вы проходите половину пути. Затем преодолеваете половину оставшегося пути, то есть 1/4 общего расстояния, и у вас остается еще 1/4 пути. Далее половина оставшегося расстояния составляет 1/8, затем 1/16, затем 1/32. Таким образом, ваше перемещение к магазину можно представить в следующем виде:

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …

Сложив десять первых членов этой последовательности, вы получите 0,999. Сумма первых двадцати членов последовательности составит 0,999999. Другими словами, вы действительно приближаетесь – очень-очень приближаетесь – к магазину. Тем не менее, сколько бы членов этой последовательности вы ни сложили, вы никогда не получите 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x