Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Здесь есть возможность читать онлайн «Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А что сегодня по этому поводу думают математики? Существуют ли в реальности бесконечно малые величины? Это зависит от того, что вы подразумеваете под реальностью. Физики говорят нам, что бесконечно малые в реальном мире не существуют. В идеальном мире математики на обычной прямой действительных чисел бесконечно малым величинам места нет, однако они существуют в некоторых нестандартных числовых системах, обобщающих действительные числа [239]. Для Лейбница и его последователей они существовали как измышления разума, которые оказались удобными и пришлись кстати. Вот так мы и станем о них думать.

Куб чисел, близких к 2

Чтобы посмотреть, насколько поучительными могут быть бесконечно малые, давайте возьмем конкретный пример. Рассмотрим арифметическую задачу. Сколько будет 2 в кубе (то есть 2×2×2)? Естественно, 8. А как насчет 2,001×2,001×2,001? Понятно, что чуть больше 8, но насколько именно?

То, что мы сейчас ищем, – это способ мышления, а не численный ответ. Общий вопрос таков: если мы незначительно меняем в задаче входное число (в данном случае с 2 на 2,001), то как оно изменится на выходе? В данном случае с 8 на 8 плюс нечто, и структуру этого нечто мы и хотим понять.

Поскольку совладать с искушением подглядеть ответ нелегко, давайте посмотрим, что нам скажет калькулятор. Набираем 2,001, нажимаем кнопку x 3и получаем:

(2,001) 3 = 8,012006001.

Структура числа после десятичной запятой такова:

0,012006001 = 0,012 + 0,000006 + 0,000000001.

Подумайте об этом так: малое плюс сверхмалое плюс сверхсверхмалое.

Мы можем пояснить такую конструкцию с помощью алгебры. Предположим, что величина x (в нашем случае 2) слегка изменяется и становится равной x + Δ x (в нашем примере 2,001). Символ Δ x означает приращение x , то есть небольшое изменение x (у нас Δ x = 0,001). И когда мы спрашиваем, чему равно (2,001) 3, мы на самом деле спрашиваем, чему равно ( x + Δ x ) 3. Перемножив его (используя треугольник Паскаля или формулу бинома), получаем:

( x + Δ x ) 3 = x 3 + 3 xx + 3 xx ) 2 + (Δ x ) 3.

В нашей задаче, где x = 2, это уравнение принимает вид

(2 + Δ x ) 3 = 2 3 + 3(2) 2Δ x + 3(2)(Δ x ) 2 + (Δ x ) 3 = 8 + 12Δ x + 6(Δ x ) 2 + (Δ x ) 3.

Теперь мы видим, почему добавка к 8 состоит из трех частей различной величины. Малая, но главная часть равна 12Δ x = 12×0,001 = 0,012. Оставшиеся части 6(Δ x ) 2и (Δ x ) 3отвечают за сверхмалую 0,000006 и сверхсверхмалую 0,000000001 величины. Чем больше множителей Δ x входит в слагаемое, тем оно меньше. Вот почему они ранжируются по размеру. Каждое лишнее умножение на маленькое число Δ x делает малую величину еще меньше.

В этом небольшом примере хорошо видна ключевая идея дифференциального исчисления. Во многих ситуациях, касающихся причины и следствия, дозы и реакции, входа и выхода, а также иной взаимосвязи между переменной x и зависящей от нее переменной y , небольшое изменение на входе Δ x приводит к небольшому изменению на выходе Δ y . Это небольшое изменение, как правило, организовано структурированным способом, который мы можем изучить, а именно: изменение на выходе организовано иерархически из нескольких частей. Они ранжированы по размеру от малого вклада до сверхмалого и еще меньших вкладов. Такая градация позволяет нам сосредоточиться на части, пусть и малой, но вносящей основной вклад, и пренебречь всеми остальными частями – сверхмалыми и еще меньшими. Именно в этом и состоит основная идея. Хотя малое изменение мало, оно колоссально по сравнению с другими (как в нашем примере число 0,12 огромно по сравнению с 0,000006 и 0,000000001).

Дифференциалы

Такой способ мышления, когда мы пренебрегаем всеми вкладами в правильный ответ, кроме самой крупной, львиной доли, может показаться только приблизительным. И это так, если изменения на входе вроде числа 0,001, добавленного нами к 2, – это конечные изменения. Но если мы рассмотрим бесконечно малые изменения на входе, то наш метод мышления станет точным. Ошибок не будет. Львиная доля становится всем. И, как мы уже говорили в этой книге, бесконечно малые изменения – именно то, что нам нужно, чтобы понимать наклоны, мгновенные скорости и площади криволинейных областей.

Чтобы посмотреть, как это работает на практике, давайте вернемся к примеру выше, когда мы пытались вычислить куб числа, слегка превышающего 2. Только теперь изменим число с 2 на 2+ dx , где dx – бесконечно малое приращение Δ x . Это понятие по своей сути не отличается осмысленностью, так что не думайте о нем слишком усердно. Главное тут – знать, что понимание того, как это работает, упрощает вычисления.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Представляем Вашему вниманию похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Обсуждение, отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x