Достаточно, например, заметить, что если магнитный полюс помещается в А , а элемент тока в В , причем ток направлен вдоль прямой АВ , то этот элемент, не оказывая никакого действия на полюс А , напротив, будет действовать как на помещенную в точке А магнитную стрелку, так и на помещенный в точке А элемент тока.
5. Индукция. Известно, что открытие электродинамической индукции последовало вскоре за бессмертными трудами Ампера.
Пока речь идет только о замкнутых токах, всякая трудность отсутствует. Гельмгольц заметил даже, что принцип сохранения энергии позволяет вывести законы индукции из электродинамических законов Ампера. Однако, как показал Бертран, при этом приходится допустить также некоторое число гипотез. Тот же принцип позволяет еще сделать подобный вывод в случае незамкнутых токов, хотя полученный при этом результат, конечно, нельзя подвергнуть контролю опыта ввиду невозможности осуществить подобные токи.
Но если бы мы пожелали приложить этот метод анализа к амперовой теории незамкнутых токов, то получили бы совершенно неожиданные результаты.
Прежде всего, индукцию нельзя было бы вывести из изменения магнитного поля по формуле, хорошо известной ученым и техникам; в самом деле, как мы сказали выше, здесь, собственно, нельзя говорить о магнитном поле.
Мало того. Пусть в контуре С наводится электродвижущая сила изменениями, происходящими в гальванической системе S . Если система S перемещается и деформируется произвольным образом, и силы токов в этой системе меняются по произвольному закону, но в конце концов система возвращается в свое начальное состояние, то естественно ожидать, что средняя электродвижущая сила, наведенная в контуре С , равна нулю.
Это справедливо, если контур С замкнут и если система S состоит исключительно из замкнутых токов; но это уже было бы неверно с точки зрения теории Ампера, если бы некоторые из токов были незамкнутыми. Таким образом, индукция уже не только не выражалась бы изменением магнитного силового потока в каком-либо обычном смысле слова, но и вообще она не могла бы быть представлена изменением чего бы то ни было.
II. Теория Гельмгольца. Я особенно подробно остановился на следствиях теории Ампера и на его трактовке действия незамкнутых токов. Трудно не признать парадоксального и искусственного характера предположений, которыми он руководствовался; невольно думается, что «так не должно быть».
Легко понять, почему Гельмгольц решился искать другие пути. Он отверг основную гипотезу Ампера, в силу которой взаимодействие двух элементов тока сводится к силе, направленной по прямой, их соединяющей. Он принял гипотезу, что элемент тока находится под действием не одной силы, а силы и пары. Именно это допущение вызвало его знаменитую полемику с Бертраном.
Гипотезу Ампера Гельмгольц заменяет следующей: два элемента тока всегда допускают электродинамический потенциал, зависящий исключительно от их положения и направления; работа сил взаимодействия между ними равна изменению этого потенциала. Таким образом, и Гельмгольц, подобно Амперу, не может обойтись без гипотезы, но он по крайней мере ясно выражает ее.
Обе теории дают согласующиеся результаты в единственном доступном для опыта случае замкнутых токов; во всех прочих случаях они расходятся.
Прежде всего, вопреки предположению Ампера, сила, которая как бы действует на подвижную часть замкнутого тока, не тождественна с силой, которая действовала бы на ту же подвижную часть, если бы она была изолирована и представляла собой незамкнутый ток. Представим себе снова наш прежний контур С’ , образованный подвижной проволокой αβ, скользящей по неподвижной проволоке; в расположении, которое только и осуществимо на опыте, подвижная часть αβ не является изолированной, а составляет часть замкнутого контура. Когда она из положения АВ переходит в А’В’ , полный электродинамический потенциал изменяется по двум причинам: во-первых, он подвергается первому приращению потому, что потенциал А’В’ относительно контура С не одинаков с потенциалом АВ ; во-вторых, он подвергается второму приращению потому, что увеличиваются потенциалы элементов АА’ и В’В относительно С . Это двоякое приращение и представляет собой работу силы, которая как бы действует на часть АВ . Если бы, напротив, αβ была изолирована, то потенциал получил бы лишь первое приращение, и этим первым приращением измерялась бы работа силы, действующей на АВ .
Читать дальше
Конец ознакомительного отрывка
Купить книгу