Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этот процесс есть доказательство путем рекурренции. Сначала формулируется теорема для n = 1; потом доказывается, что если она справедлива для n − 1, то она справедлива и для n , и отсюда выводится заключение о справедливости ее для всех целых чисел.

Мы только что видели, как можно воспользоваться этим для доказательства правил сложения и умножения, т. е. правил алгебраического вычисления; это вычисление есть орудие преобразования, которое применяется в гораздо большем числе разнообразных комбинаций, чем простой силлогизм; но это орудие еще чисто аналитическое, оно не способно научить нас ничему новому. Если бы математика не имела ничего другого, она тотчас же остановилась бы в своем развитии; но она получает новое средство в том же процессе, т. е. в рассуждении путем рекурренции, и потому может непрерывно продолжать свое поступательное движение.

В каждом шаге, если его хорошенько рассмотреть, мы находим этот способ рассуждения – или в той простой форме, которую мы только что ему придали, или в форме более или менее видоизмененной.

В нем, следовательно, по преимуществу заключается математическое рассуждение, и нам следует изучить его ближе.

V

Существенная черта умозаключения путем рекурренции заключается в том, что оно содержит в себе бесчисленное множество силлогизмов, сосредоточенных, так сказать, в одной формуле.

Чтобы лучше можно было себе это уяснить, я сейчас расположу эти силлогизмы один за другим в виде некоторого каскада. Это, в сущности, – гипотетические силлогизмы.

Теорема верна для числа 1.

Если же она справедлива для 1, то она справедлива для 2.

Следовательно, она верна для 2.

Если же она верна для 2, то она верна для 3.

Следовательно, она верна для 3 и т. д.

Очевидно, что заключение каждого силлогизма служит следующему меньшей посылкой.

Большие посылки всех наших силлогизмов могут быть приведены к одной формуле:

Если теорема справедлива для n − 1, то она справедлива для n .

Таким образом, очевидно, что в рассуждении путем рекурренции ограничиваются выражением меньшей посылки первого силлогизма и общей формулы, которая в виде частных случаев содержит в себе все большие посылки.

Этот никогда не оканчивающийся ряд силлогизмов оказывается приведенным к одной фразе в несколько строк.

Теперь легко понять, почему всякое частное следствие, вытекающее из теоремы, может быть, как я изложил выше, проверено чисто аналитическим процессом.

Если, вместо того чтобы доказывать справедливость нашей теоремы для всех чисел, мы желаем обнаружить ее справедливость, например, только для числа 6, для нас будет достаточно обосновать 5 первых силлогизмов нашего последовательного ряда; если бы мы пожелали доказать теорему для числа 10, надо было бы взять их 9; для большого числа надо было бы взять их еще больше; но как бы велико ни было это число, мы всегда в конце концов его достигли бы, и аналитическая проверка была бы возможна.

Однако как бы далеко мы ни шли, мы никогда не могли бы дойти до общей применимой ко всем числам теоремы, которая одна только и может быть предметом науки. Чтобы ее достигнуть, понадобилось бы бесконечно большое число силлогизмов – нужно перескочить бездну, которую никогда не будет в состоянии заполнить терпение аналитика, ограниченное одними средствами формальной логики.

Вначале я поставил вопрос, почему нельзя было бы вообразить ум, достаточно мощный для того, чтобы сразу подметить всю совокупность математических истин.

Ответ теперь нетруден; шахматный игрок может рассчитать вперед четыре, пять ходов, но, каким бы необыкновенным его ни представляли, он всегда предусмотрит только конечное число ходов; если он применит свои способности к арифметике, то он не будет в состоянии подметить в ней общих истин путем одной непосредственной интуиции; он не будет в состоянии обойтись без помощи рассуждения путем рекурренции при доказательстве самой незначительной теоремы, ибо это и есть то орудие, которое позволяет переходить от конечного к бесконечному.

Это орудие всегда полезно, ибо оно позволяет нам сразу пройти любое число ступеней и избавляет нас от долгих, скучных и однообразных проверок, которые скоро стали бы практически невыполнимыми.

Но оно делается неизбежным, раз мы имеем в виду общую теорему, к которой аналитическая проверка нас непрерывно приближала бы, никогда не позволяя ее достигнуть.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x