Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4) Наконец, наша евклидова геометрия есть лишь род условного языка; мы могли бы изложить факты механики, относя их к неевклидову пространству, которое было бы основой, менее удобной, но столь же законной, как и наше обычное пространство; изложение слишком осложнилось бы, но осталось бы возможным.

Таким образом, абсолютное пространство, абсолютное время, даже сама геометрия не имеют характера вещей, обусловливающих собой механику; они так же мало предваряют существование механики, как мало французский язык логически предваряет существование истин, выражаемых по-французски.

Можно было бы попытаться изложить основные законы механики на языке, независимом от всех этих соглашений; тогда, без сомнения, можно было бы лучше отдать себе отчет в том, что представляют эти законы сами по себе; как раз это и попытался сделать (по крайней мере отчасти) Андрад в своих «Leçons de Mécanique physique».

Формулировка этих законов оказалась бы, конечно, гораздо более сложной, потому что все указанные выше соглашения и созданы именно для того, чтобы сократить и упростить эту формулировку.

Здесь я оставляю в стороне все эти трудности, за исключением вопроса об абсолютном пространстве. Я далек от мысли пренебрегать ими; но мы достаточно разобрали их в двух первых частях.

Итак, я допущу временно абсолютное время и евклидову геометрию.

Принцип инерции. Тело, на которое не действует никакая сила, может двигаться только прямолинейно и равномерно.

Есть ли это истина, присущая a priori нашему разуму? Если бы это было так, то как же не знали ее греки? Как могли они думать, что движение прекращается, как только перестает действовать вызвавшая его причина, или что всякое тело, не встречающее никаких препятствий со стороны, принимает круговое движение, как наиболее совершенное из всех движений?

Говорят, что скорость тела не может измениться, раз нет основания для ее изменения; но не можем ли мы с таким же правом утверждать, что не может измениться положение тела или кривизна его траектории, раз внешняя причина не вызывает их изменения?

Если принцип инерции не принадлежит к числу априорных истин, то не значит ли это, что мы имеем в нем экспериментальный факт? Но разве когда-нибудь экспериментировали над телами, на которые не действовала никакая сила? И как можно было бы получить уверенность, что на эти тела не действует никакая сила? Обыкновенно ссылаются на пример бильярдного шара, очень долгое время катящегося по мраморному столу; но на каком основании мы говорим, что на него не действует никакая сила? Не на том ли, что он слишком удален от всех других тел, чтобы испытывать от них сколько-нибудь заметное действие? Однако он не дальше от земли, чем в том случае, если бы был свободно брошен в воздухе; а всякий знает, что в таком случае он подвергся бы влиянию тяжести, обусловленному земным притяжением.

Преподаватели механики обычно быстро излагают пример с шаром; но они прибавляют, что принцип инерции проверяется косвенно в своих следствиях. Это – неправильное выражение; очевидно, они хотят сказать, что можно проверить различные следствия более общего принципа, по отношению к которому принцип инерции является только частным случаем.

Этот общий принцип я предложу сформулировать так:

Ускорение тела зависит только от положения этого тела и соседних тел и от их скоростей. Математик сказал бы, что движения всех материальных частиц Вселенной определяются дифференциальными уравнениями второго порядка.

Чтобы уяснить, что здесь мы имеем дело с естественным обобщением закона инерции, я позволю себе привести один воображаемый случай. Выше я указывал, что закон инерции не присущ нам a priori; другие законы были бы столь же хорошо, как и он, совместимы с принципом достаточного основания. Когда на тело не действует никакая сила, то мы могли бы вообразить, что неизменным является не скорость его, а его положение или его ускорение.

Итак, представим себе на минуту, что один из этих двух гипотетических законов есть закон природы и заступает место нашего закона инерции. Каково было бы его естественное обобщение? Поразмыслив минуту, мы это уясним.

В первом случае пришлось бы допустить, что скорость тела зависит только от его положения и от положения соседних тел; во втором – что изменение ускорения тела зависит только от положения этого тела и соседних тел, от их скоростей и от их ускорений.

Или, говоря математическим языком, дифференциальные уравнения движения были бы в первом случае первого порядка, во втором – третьего.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x