Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С другой стороны, порядок, в котором категории должны быть размещены, не оказывается уже произвольным. Обращаясь к предыдущему ряду, легко заметить, что В 2должен быть помещен между АА 2и, следовательно, между ВВ 3, но не может быть помещен, например, между ВВ 4.

Итак, существует порядок, в котором естественно располагаются категории, отвечающие точкам пространства. И опыт нас учит, что этот порядок представляется в виде таблицы с тремя входами, вот почему пространство имеет три измерения.

V

Характерная особенность пространства, выражающаяся в том, что оно обладает тремя измерениями, есть, таким образом, особенность нашего распределительного щита, есть, так сказать, внутреннее свойство человеческого ума. Достаточно было бы разрушить некоторые из соединений, т. е. некоторые ассоциации идей, чтобы получить другой распределительный щит, а этого было бы достаточно, чтобы пространство приобрело четвертое измерение. Такой результат может удивить некоторых. Ведь внешний мир, скажут они, должен же играть здесь какую-то роль. Если число измерений зависит от того, как мы созданы, то можно предположить, что мыслящие существа, живущие в нашем мире, но созданные иначе, чем мы, полагали бы, что пространство имеет больше или меньше трех измерений. И не утверждал ли Цион, что японские мыши, имеющие только две пары полукружных каналов, думают, что пространство имеет два измерения? А подобное мыслящее существо, если бы оно было способно создать физику, разве не построило бы физики двух или четырех измерений, физики, которая, в известном смысле, была бы такою же, как и наша, ибо она описывала бы другим языком тот же самый мир?

В самом деле, не представляет, по-видимому, никаких затруднений перевести нашу физику на язык геометрии четырех измерений. Осуществить действительно такую задачу значило бы потратить много усилий с ничтожной пользой, и я ограничусь лишь указанием на механику Герца, в которой мы имеем нечто, напоминающее такой перевод. Но такой перевод, по-видимому, всегда был бы сложнее текста и всегда обнаруживал бы свою заимствованную природу, тогда как язык трех измерений кажется наиболее приспособленным к описанию нашего мира, хотя это описание может быть точно выполнено и на другом языке.

Однако наш распределительный щит возник неслучайно. Имеется связь между сигналом А 1и ответным ударом В 1, это – внутреннее свойство нашего ума. Но чем объясняется эта связь? Тем, что ответный удар В 1позволяет действительно защититься против опасности А 1, а это – факт, внешний для нас, это – свойство внешнего мира. Таким образом, наш распределительный щит есть лишь выражение совокупности внешних фактов; если он имеет три измерения, то это потому, что он приспособлен к миру, имеющему определенные свойства, и главное из этих свойств заключается в том, что в этом мире существуют твердые тела, перемещающиеся по таким законам, которые мы называем законами движения неизменяющихся твердых тел. Если, следовательно, язык трех измерений лучше всего позволяет нам описать наш мир, то мы не должны этому удивляться. Этот язык скопирован с нашего распределительного щита, а этот щит установлен для того, чтобы можно было жить в этом мире.

Я сказал, что мы могли бы представить себе мыслящие существа, живущие в нашем мире и обладающие распределительным щитом четырех измерений; такие существа мыслили бы сверхпространство. Но не может быть уверенности в том, что такие существа, если бы и рождались, могли бы выжить и защититься против тысяч опасностей, которыми они были бы окружены в этом мире.

VI

В заключение несколько замечаний. Существует разительный контраст между грубостью той примитивной геометрии, которая сводится к распределительному щиту, и безграничной точностью геометрии геометров. И, однако, последняя – плод первой. Но не ее одной; она должна была быть оплодотворена присущей нам способностью к построению математических понятий, как, например, понятия о группах; нужно было среди этих чистых понятий найти наиболее приспособленное к этому грубому пространству, генезис которого я пытался объяснить на предшествующих страницах и которое является общим у нас и у высших животных.

Очевидность некоторых геометрических постулатов, сказали мы, есть не что иное, как наша косная неспособность отказаться от очень старых привычек. Но эти постулаты чрезвычайно точны, тогда как привычки заключают в себе нечто по существу зыбкое. И, как только мы хотим мыслить, мы испытываем нужду в этих чрезвычайно точных постулатах, так как лишь с их помощью мы можем избежать противоречия. Но среди всех возможных систем постулатов имеются такие, которые мы отказываемся принять, потому что они не согласуются с нашими привычками; как ни зыбки, как ни эластичны эти привычки, все же они имеют предел этой эластичности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x