Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другое замечание. Уже на второй ступени выражение факта может быть только верным ила неверным. Этого нельзя сказать про любое предложение; если предложением выражается условное соглашение, то нельзя сказать, что это выражение верно в собственном смысле слова, так как оно не могло бы быть верно помимо моей воли: оно верно лишь потому, что я этого хочу.

Когда я, например, говорю «единица длины есть метр», это – решение, которое я принимаю, а не констатация, которая мне предписывается. Точно так же обстоит дело, например, по отношению к постулату Евклида, что я и доказал в другом месте.

Когда меня спрашивают, становится ли темно, я всегда знаю, ответить ли «да» или «нет».

Хотя бесчисленное множество возможных фактов будет восприниматься через то же самое выражение: становится темно, – однако я всегда буду знать, входит ли осуществившийся факт в число тех, которые соответствуют этому выражению, или нет. Факты поделены на категории, и если меня спрашивают, входит ли констатируемый мною факт в такую-то категорию или нет, я не затруднюсь ответом.

Без сомнения, такая классификация является достаточно произвольной, чтобы предоставить широкое участие свободе или прихоти человека. Словом, эта классификация есть соглашение. Раз принято это соглашение, то, если меня спрашивают, имел ли место определенный факт, я всегда сумею дать ответ, и мой ответ будет мне предписан свидетельством моих чувств.

Итак, если во время затмения спросят, становится ли темно, – всякий ответит утвердительно. Без сомнения, отрицательный ответ дали бы те, кто говорит на языке, на котором свет зовется тьмой, а тьма – светом. Но может ли это иметь какое-либо значение?

То же самое имеет место в математике: когда я установил определения и постулаты, являющиеся условными соглашениями, всякая теорема уже может быть только верной или неверной. Но для ответа на вопрос, верна ли эта теорема, я прибегну уже не к свидетельству моих чувств, а к рассуждению.

Словесное выражение факта всегда может быть проверено, и для проверки мы прибегаем или к свидетельству наших чувств или к воспоминанию об этом свидетельстве. Этим, собственно, и характеризуется факт. Если вы зададите мне вопрос, верен ли такой-то факт, то я сначала попрошу вас, если понадобится, уточнить условия разговора, иными словами, спрошу вас, на каком языке вы говорите; затем, раз это будет установлено, я обращусь к своим чувствам и отвечу вам «да» или «нет». Ответ будет дан моими чувствами, воспринимающими факт, но вовсе не вами в ваших словах: независимо от того, выразил ли я его по-английски или по-французски.

Подлежит ли здесь что-либо изменению при переходе к дальнейшим ступеням? Пусть я наблюдаю гальванометр; если я, подобно только что сказанному, спрошу у посетителя, не знакомого с делом, идет ли ток, то он станет смотреть на проволоку, стараясь увидеть, не идет ли что-нибудь по ней; но если я задам тот же вопрос своему помощнику, понимающему мой язык, то он будет знать, что вопрос означает, перемещается ли световой зайчик, и он станет смотреть на шкалу,

Но в таком случае в чем состоит различие между выражением голого факта и выражением научного факта? В том же, в чем состоит различие между выражением одного и того же голого факта на французском языке и на языке немецком. Научное выражение есть перевод «голой» формулы на язык, особенное отличие которого от обычного немецкого или французского языка состоит в том, что на нем говорит гораздо меньшее число людей.

Однако не станем спешить. Для измерения тока я могу пользоваться весьма разнообразными типами гальванометра, а также электродинамометром. Поэтому, когда я говорю: «по этой цепи проходит ток во столько-то ампер», – это значит: если я включу в эту цепь определенный гальванометр, то я увижу световой зайчик на делении α; но это равным образом значит: если я включу в эту цепь определенный электродинамометр, то я увижу зайчик на делении β. Та же фраза будет означать и множество других вещей, ибо ток может проявлять себя не только механическими действиями, но также действиями химическими, тепловыми, световыми и т. п.

Итак, мы здесь видим, что одно и то же высказывание соответствует весьма большому числу совершенно различных фактов. Почему? Потому что я допускаю закон, согласно которому при осуществлении известного механического действия одновременно осуществляется также и определенное химическое действие. Все множество прошлых опытов всегда подтверждало этот закон, и поэтому я составил убеждение, что можно одним и тем же предложением выражать два факта, столь неизменно связанные друг с другом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x