Айзек Азимов - Числа - от арифметики до высшей математики

Здесь есть возможность читать онлайн «Айзек Азимов - Числа - от арифметики до высшей математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Эксмо, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Числа: от арифметики до высшей математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Числа: от арифметики до высшей математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.

Числа: от арифметики до высшей математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Числа: от арифметики до высшей математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А может ли вообще существовать квадратный корень в виде дробного числа? Почему же нет? Согласно нашему определению экспоненциальных выражений (1 2/ 5) 2— это 1 2/ 5× 1 2/ 5, и ответом является число 1 24/ 25. А это, в свою очередь, означает, что √1 24/ 25равен 1 2/ 5. Теперь мы убедились, что не только квадратный корень может быть дробным числом, но и квадрат числа также может быть дробным числом. И в обоих случаях справедливы те же правила, что и в случае целых чисел.

Кроме того, случайно оказалось, что число 1 24/ 25, будучи умноженным на себя самое, дает результат, близкий к 2. Отсюда следует, что 1 2/ 5близко к √2. Только 1/25 отделяет нас от искомого ответа, так как (1 2/ 5) 2— это 1 24/ 25, а нам нужно получить число 1 25/ 25, то есть 2.

Но можно получить и более точный ответ. Если помножить дробное число 1 41/ 100на себя самое, мы получим 1 9881/ 10000, что гораздо ближе к 2. Может показаться, что, если делать более точные вычисления, мы рано или поздно найдем точное значение дробного числа, которое является корнем квадратным из 2, хотя, возможно, это будет очень сложное число.

Но так ли это, вот в чем вопрос.

Сравниваем линии

Впервые поиском корня квадратного из 2 занялись еще математики Древней Греции. Как я вам уже говорил, они в первую очередь были геометрами, их интересовали соотношения длин отрезков геометрических фигур. Например, если провести диагональ в прямоугольнике, как показано на рисунке, то в каком соотношении будут находиться длина диагонали и длины сторон прямоугольника? Очевидно, что диагональ длиннее, но насколько? Древние греки хотели найти ответ на этот вопрос.

Предположим, мы сравниваем два отрезка. Длина одного из них 2 см, а длина другого — 1 см. Следовательно, мы можем сказать, что длины отрезков соотносятся как 2 к 1, или один отрезок в два раза длиннее другого. Длина одного из отрезков 4 см, а длина другого — 2 см, то можно сказать, что длины отрезков соотносятся как 4 к 2.

В обоих случаях длина одного из отрезков вдвое больше длины другого отрезка. С точки зрения математика, соотношение величин представляет гораздо больший интерес, чем их абсолютные значения. Не так важно, что в одном случае длины равны 4 и 2 см, а в другом 48 и 24 см. Математик в обоих случаях обратит внимание на то, что длина одного отрезка вдвое больше длины другого, то есть соотносятся как 2 к 1.

Прямоугольник с диагональю Самое удобное представить соотношение величин в - фото 35
Прямоугольник с диагональю

Самое удобное — представить соотношение величин в виде дроби. Если длина одного отрезка равна 2 см, а длина другого — 1 см, значит, их соотношение равно 2/1. Если длина одного отрезка равна 48 см, а длина другого 24 см, значит, их соотношение равно 48/24 или 2/1, если мы разделим обе части на 24.

Дробь, представляющая собой отношение двух однотипных величин, называется соотношением. (Этими величинами могут быть и длины отрезков, и объемы сосудов, и веса двух человек и так далее.)

Разумеется, соотношение может не быть таким простым, как 2 : 1. Предположим, длина одного отрезка равна одному сантиметру, а длина другого — 1 9/ 10сантиметра.

Тогда соотношение равно 1 9/ 10/1. Это выражение можно упростить, умножив верхнюю и нижнюю части на 10. Тогда получим, что соотношение равно 19/10.

Соотношение любых двух чисел, выраженных дробными числами, может быть представлено как отношение двух целых чисел. Например, у нас есть два отрезка, длина одного из них — 2 4/ 17сантиметра, а длина другого — 1 13/ 15сантиметра. Соотношение этих двух отрезков можно представить в виде дроби — 2 4/ 17/1 13/ 15. Если мы умножим числитель и знаменатель этой пугающе сложной дроби на 127½, то получим то же соотношение в виде целых чисел, то есть 285/238.

(Гораздо проще было бы воспользоваться десятичными дробями, но в Древней Греции они не были известны. А если мы последуем по тому же пути, по которому древние математики познавали мир, наше путешествие будет значительно интереснее.)

Теперь можно вернуться к нашему прямоугольнику. Нас интересует соотношение длин сторон прямоугольника и длин диагонали, то есть мы решаем ту же задачу, что и греческие математики в древности. Поскольку прямоугольник разделяется диагональю на две абсолютно симметричные части, мы можем упростить задачу и отбросить одну половину фигуры, предположим, левую. У нас остался так называемый прямоугольный треугольник.

Прямоугольный треугольник с гипотенузой Еще за много столетий до наших дней - фото 36
Прямоугольный треугольник с гипотенузой

Еще за много столетий до наших дней египтяне на основе практического опыта установили, что если одна сторона прямоугольного треугольника равна 3 единицам, а другая — 4 единицам, то длина гипотенузы составит 5 единиц. В этом случае соотношение гипотенузы и одной из сторон равно 5/4 для более длинной стороны и 5/3 для более короткой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Числа: от арифметики до высшей математики»

Представляем Вашему вниманию похожие книги на «Числа: от арифметики до высшей математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Числа: от арифметики до высшей математики»

Обсуждение, отзывы о книге «Числа: от арифметики до высшей математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x