«Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, и если бы, вдобавок, он оказался бы достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в единой формуле движения величайших тел вселенной наравне с движениями легчайших атомов: не осталось бы ничего, что было бы для него недостаточно, и будущее, так же как и прошедшее, предстало бы перед его взором.» [6] Лаплас П. Опыт философии теории вероятностей. М., 1908, с.9.
В этом отрывке из книги Лапласа ясно сформулировано его представление о субъективном характере вероятности и отсутствии случая в самой природе, в которой все будто бы подчинено жесткой необходимости.
Таким образом, лишь относительное незнание, согласно этой концепции, есть та причина, которая заставляет обращаться к вероятности. Ограниченность человеческого разума в его вычислительных способностях делает такое обращение удобным вспомогательным приемом, своеобразным подспорьем, «костылями» нашего незнания. Для всеведущего же существа не было бы случая и не было бы нужды использовать вероятность.
Механическое понимание природы, метафизическое противопоставление «жесткой» детерминации естественных событий ограниченности человеческого разума, как разновидность отмеченной К. Марксом созерцательности французского материализма, явились действительными источниками субъективизма классического подхода к истолкованию вероятности.
Свойственный классическому подходу механизм в понимании природы оказался несовместимым с признанием какой-либо объективной неопределенности. Нынешнее состояние вселенной, по Лапласу, полностью и во всех деталях определяет собой ее будущие состояния. Это положение и получило название «жесткого» лапласовского детерминизма. Согласно последнему предполагается, что данное состояние материальной системы заключает в себе в виде возможности все последующие ее изменения. А сама возможность рассматривается как потенциальная необходимость, которая обязательно должна реализоваться.
Тем самым предполагалось, что даже самые незначительные события были заложены в виде возможности в прошлом. Но это означает, что в мире не возникает ничего принципиально нового. И тогда, по существу, отрицается и само развитие. [7] Мелюхин С. Т. О соотношении возможности и действительности в неорганической природе. – В кн. Проблема возможности и действительности. М-Л., 1964, с. 29–30.
В действительности же развитию материальных систем объективно присущ момент неопределенности. Ибо, сам процесс развития представляет развертывание и реализацию некоторых возможностей, которые в качестве скрытых тенденций характеризуют различные направления в развитии этих систем. Возможность же обладает природой необходимости и случайности. Необходимости – ибо для ее развертывания и реализации требуется действие объективных законов. Случайности – ибо для ее реализации требуется наличие определенных внешних условий. Поэтому-то лишь немногие из массы возможностей обычно реализуются в действительность. И в этом процессе нет предопределения.
Далее. Неопределенность в развитии материальных систем имеет место и вследствие того, что всегда возникают новые возможности, которых не было в прошлых состояниях системы. Как показал С. Т. Мелюхин, отрицание зарождения новых возможностей равносильно признанию конца развития, конца мира. [8] В кн. Проблема возможности и действительности. М-Л., 1964, с.34.
Но наличие объективной неопределенности если не отрицает полностью, то по крайней мере значительно сужает сферу приложимости лапласовской абстракции «жесткой» определенности, оставляя тем самым место для вероятности среди объективных понятий, как особой характеристики этой объективной неопределенности.
Наряду с рассмотренными выше гносеологическими и методологическими пороками классической концепции серьезным ее недостатком являлась узость сферы, где классическое понятие работало достаточно удовлетворительно (азартные игры, страховое дело, лотереи). Со всей очевидностью необходимость радикальных перемен в теории вероятностей обнаружилась лишь с переходом к исследованию класса непрерывных и бесконечных величин. Начало такого рода исследованиям положила статистическая физика (Клаузиус, Максвелл, Гиббс).
Весьма приспособленной к решению нового круга задач оказалась концепция вероятности, связывающая ее не с поведением индивидуального объекта, как в классической теории, а с массовыми случайными событиями, с классом объектов, которые комбинируют индивидуальную иррегулярность с агрегатной регулярностью. Этот подход получил в литературе название частотного или статистического.
Читать дальше