Саймон Сингх - Великая Теорема Ферма

Здесь есть возможность читать онлайн «Саймон Сингх - Великая Теорема Ферма» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2000, Издательство: МЦНМО, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Великая Теорема Ферма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Великая Теорема Ферма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

История загадки, которая занимала лучшие умы мира на протяжении 358 лет

Великая Теорема Ферма — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Великая Теорема Ферма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Проблема плотнейшей упаковки шаров требует от математиков доказательства того, что гранецентрированная кубическая решетка представляет собой наиболее эффективный вариант упаковки шаров. Эта проблема на полвека старше Великой теоремы Ферма и, как теперь оказалось, еще более неприступна.

Как и в случае Великой теоремы Ферма, решение проблемы Кеплера сводится к доказательству, охватывающему бесконечное множество возможных вариантов упаковки. Гипотеза Кеплера утверждает, что среди бесконечно многих вариантов расположения шаров нет ни одного такого, у которого коэффициент заполнения пространства был бы больше, чем у гранецентрированной кубической решетки. Математикам предстоит доказать, что это невозможно не только для регулярного, но и для случайного, хаотического, варианта расположения шаров.

За последние 380 лет никому не удалось доказать, что гранецентрированная кубическая решетка действительно служит оптимальной стратегией упаковки. Но никто пока не открыл более эффективного метода упаковки. Отсутствие контрпримера означает, что для всех практических целей утверждение Кеплера применимо, но в абсолютном мире математики абсолютно необходимо строгое доказательство. Британский специалист по упаковке шаров К. А. Роджерс говорит, что «большинство математиков в правильность гипотезы Кеплера верят, а все физики в ее правильности твердо убеждены, так как это знают».

Несмотря на отсутствие полного доказательства, за прошедшие со времен Кеплера столетия было пройдено несколько вех на пути к решению. В 1892 году скандинавский математик Аксель Туэ нашел доказательство для двумерного аналога проблемы Кеплера, т. е. обнаружил наиболее эффективное расположение шаров в одном-единственном слое, или, иначе говоря, укладки апельсинов не в ящике, а на подносе. Решением оказалось гексагональное расположение шаров. Впоследствие Тот, Сегрэ и Малер пришли к тому же заключению, но ни один из использованных в двумерном случае методов не применим к исходной трехмерной проблеме Кеплера.

В наше время некоторые математики попытались подойти к проблеме Кеплера с совершенно другой стороны, а именно — вычислить верхний предел коэффициента заполнения пространства. В 1958 году К. А. Роджерс вычислил его верхний предел, который оказался равным 77,97 %. Это означает, что невозможно расположить шары так, чтобы коэффициент заполнения пространства был выше 77,97 %. Такое значение коэффициента заполнения пространства не намного больше, чем его значение для гранецентрированной кубической решетки, равное 74,04 %. Следовательно, если у какого-нибудь расположения шаров коэффициент заполнения пространства и оказался бы выше, чем у гранецентрированной кубической решетки, то превышение составило бы всего лишь несколько процентов. Оставалось узкое окно в 3,93 %, в которое могло бы «втиснуться» какое-то дикое расположение шаров, которое стало бы контрпримером, опровергающим гипотезу Кеплера. После Роджерса другие математики попытались полностью закрыть образовавшееся окно, понизив верхний предел до 74,04 %. Если бы эти попытки оказались удачными, то для других расположений не осталось бы места, они не могли бы иметь более высокий коэффициент заполнения пространства, чем гранецентрированная кубическая решетка, и тем самым гипотеза Кеплера оказалась бы «оправданной ввиду неявки подозреваемой». К сожалению, снижение верхнего предела оказалось процессом медленным и трудным, и к 1988 году верхний предел удалось уменьшить лишь до 77,84 %, что лишь незначительно улучшает оценку Роджерса.

Несмотря на столь медленный прогресс, проблема плотнейшей упаковки шаров летом 1990 года неожиданно попала в заголовки на первых полосах газет. Ву-И Хзянь из Калифорнийского университета в Беркли опубликовал результат, который, по его утверждению, был доказательством гипотезы Кеплера. Первоначально реакция математического сообщества была оптимистической, но когда работа Ву-И Хзяня подверглась тщательному рецензированию, в ней был обнаружен ряд ошибок, и доказательство рухнуло.

Как и в случае с доказательством Уайлса, Хзянь через год представил пересмотренный вариант доказательства, в котором, как он утверждал, ему удалось обойти те проблемы, которые были обнаружены в первоначальном варианте рукописи. К сожалению для Хзяня, его критики продолжали считать, что в его логике остаются пробелы. В письме к Хзяню математик Томас Хейлис попытался объяснить свои сомнения: «Одно предположение, сделанное в Вашей второй статье, представляется мне более фундаментальным и не менее трудным для доказательства, чем остальные… Ваши рассуждения весьма основательно и по существу опираются на это предположение, однако нигде нет и намека на его доказательство».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Великая Теорема Ферма»

Представляем Вашему вниманию похожие книги на «Великая Теорема Ферма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Великая Теорема Ферма»

Обсуждение, отзывы о книге «Великая Теорема Ферма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x