Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 3. Положение ядер при последовательном предъявлении объектов со скоростью обучения 0,01. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер.

Из анализа рис. 3 видно, что изменения ядер уменьшаются со временем. Однако в случае изначально неудачного распределения ядер потребуется множество шагов для перемещения их к «своим» кластерам (см. рис. 4).

Рис. 4. Обучение сети Кохонена со скоростью 0,01 (107 эпох)

Следующая модификация алгоритма обучения состоит в постепенном уменьшении скорости обучения. Это позволяет быстро приблизиться к «своим» кластерам на высокой скорости и произвести доводку при низкой скорости. Для этого метода необходимым является требование, чтобы последовательность скоростей обучения образовывала расходящийся ряд, иначе остановка алгоритма будет достигнута не за счет выбора оптимальных ядер, а за счет ограниченности точности вычислений. На рис. 5 приведены состояния сети Кохонена при использовании начальной скорости обучения 0,5 и уменьшения скорости в соответствии с натуральным рядом (1, ½, ⅓, …). Уменьшение скорости обучения производилось после каждой эпохи. Из графика изменения суммы квадратов изменений координат ядер видно, что этот метод является лучшим среди рассмотренных. На рис. 6 приведены результаты применения этого метода в случае неудачного начального положения ядер. Распределение объектов выбрано то же, что и на рисунке 4 — два класса по 8 объектов, равномерно распределенных в интервалах [π/4,3 π/4] и [5π/4, 7π/4].

Рис. 5. Положение ядер при последовательном предъявлении объектов со снижением скорости обучения с 0,5 в соответствии с последовательностью 1/ n . Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер (в логарифмической шкале).

Рис. 6. Обучение сети Кохонена со снижением скорости с 0,5.

Альтернативой методу с изменением шага считается метод случайного перебора объектов в пределах эпохи. Основная идея этой модернизации метода состоит в том, чтобы избежать направленного воздействия.

Рис. 7. Положение ядер при предъявлении объектов в случайном порядке со скоростью обучения 0,5. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер.

Под направленным воздействием подразумевается порядок предъявления объектов, который влечет смещение ядра от оптимального положения в определенную сторону. Именно эффект направленного воздействия приводит к тому, что стандартный метод зацикливается (отметим, что пример с равномерно распределенными по окружности объектами, пронумерованными против часовой стрелки, специально строился для оказания направленного воздействия). Именно из-за направленного воздействия ядра на рис. 6 направлены не строго вертикально. Случайный порядок перебора объектов позволяет избежать, точнее снизить эффект, направленного воздействия. Однако из рис. 7, на котором приведены результаты применения метода перебора объектов в случайном порядке к задаче с равномерно распределенными по окружности объектами, видно, что полностью снять эффект направленного воздействия этот метод не позволяет.

Возможны различные сочетания рассмотренных выше методов. Например, случайный перебор объектов в сочетании с уменьшением скорости обучения. Именно такая комбинация методов является наиболее мощным методом среди методов пообъектного обучения сетей Кохонена.

Метод динамических ядер

Альтернативой методам пообъектного обучения сетей Кохонена является метод динамических ядер, который напрямую минимизирует суммарную меру близости (1). Метод является итерационной процедурой, каждая итерация которой состоит из двух шагов. Сначала задаются начальные значения ядер. Затем выполняют следующие шаги:

Разбиение на классы при фиксированных значениях ядер:

K i ={ x : dist( a i, x )≤dist( a j, x )} (3)

Оптимизация значений ядер при фиксированном разбиении на классы:

(4)

В случае равенства в формуле (3) объект относят к классу с меньшим номером. Процедура останавливается если после очередного выполнения разбиения на классы (3) не изменился состав ни одного класса.

Исследуем сходимость метода динамических ядер. На шаге (3) суммарная мера близости (1) может измениться только при переходе объектов из одного класса в другой. Если объект перешел из j- го класса в i- й, то верно неравенство dist( a i, x )≤dist( a j, x ). То есть при переходе объекта из одного класса в другой суммарная мера близости не возрастает. На шаге (4) минимизируются отдельные слагаемые суммарной меры близости (1). Поскольку эти слагаемые независимы друг от друга, то суммарная мера близости на шаге (4) не может возрасти. При это если на шаге (4) суммарная мера близости не уменьшилась, то ядра остались неизменными и при выполнении следующего шага (3) будет зафиксировано выполнение условия остановки. И наконец, учитывая, что конечное множество объектов можно разбить на конечное число классов только конечным числом способов, получаем окончательное утверждение о сходимости метода динамических ядер.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x