где α i — веса персептрона, θ — порог, φ i — значения входных сигналов, скобки [] означают переход от булевых (логических) значений к числовым значениям по правилам описанным выше. В качестве входных сигналов персептрона могут выступать как входные сигналы всей сети (переменные x ), так и выходные значения других персептронов. Добавив постоянный единичный входной сигнал φ 0≡1 и положив α 0=– θ , персептрон можно переписать в следующем виде:
(1)
Очевидно, что выражение (1) вычисляется одним нейроном с пороговым нелинейным преобразователем (см. главу «Описание нейронных сетей»). Каскад из нескольких слоев таких нейронов называют многослойным персептроном. Далее в этой главе будут рассмотрены некоторые свойства персептронов. Детальное исследование персептронов приведено в работе [146].
Обучение персептрона. Правило Хебба
Персептрон обучают по правилу Хебба. Предъявляем на вход персептрона один пример. Если выходной сигнал персептрона совпадает с правильным ответом, то никаких действий предпринимать не надо. В случае ошибки необходимо обучить персептрон правильно решать данный пример. Ошибки могут быть двух типов. Рассмотрим каждый из них.
Первый тип ошибки — на выходе персептрона 0, а правильный ответ — 1. Для того, чтобы персептрон (1) выдавал правильный ответ необходимо, чтобы сумма в правой части (1) стала больше. Поскольку переменные φ i принимают значения 0 или 1, увеличение суммы может быть достигнуто за счет увеличения весов α i . Однако нет смысла увеличивать веса при переменных φ i , которые равны нулю. Таким образом, следует увеличить веса α i при тех переменных , которые равны 1. Для закрепления единичных сигналов с φ i , следует провести ту же процедуру и на всех остальных слоях.
Первое правило Хебба.Если на выходе персептрона получен 0, а правильный ответ равен 1, то необходимо увеличить веса связей между одновременно активными нейронами. При этом выходной персептрон считается активным. Входные сигналы считаются нейронами.
Второй тип ошибки — на выходе персептрона 1, а правильный ответ равен нулю. Для обучения правильному решению данного примера следует уменьшить сумму в правой части (1). Для этого необходимо уменьшить веса связей α i при тех переменных φ i , которые равны 1 (поскольку нет смысла уменьшать веса связей при равных нулю переменных φ i ). Необходимо также провести эту процедуру для всех активных нейронов предыдущих слоев. В результате получаем второе правило Хебба.
Второе правило Хебба.Если на выходе персептрона получена 1, а правильный ответ равен 0, то необходимо уменьшить веса связей между одновременно активными нейронами.
Таким образом, процедура обучения сводится к последовательному перебору всех примеров обучающего множества с применением правил Хебба для обучения ошибочно решенных примеров. Если после очередного цикла предъявления всех примеров окажется, что все они решены правильно, то процедура обучения завершается.
Нерассмотренными осталось два вопроса. Первый — насколько надо увеличивать (уменьшать) веса связей при применении правила Хебба. Второй — о сходимости процедуры обучения. Ответы на первый из этих вопросов дан в следующем разделе. В работе [146] приведено доказательство следующих теорем:
Теорема о сходимости персептрона. Если существует вектор параметров α , при котором персептрон правильно решает все примеры обучающей выборки, то при обучении персептрона по правилу Хебба решение будет найдено за конечное число шагов.
Теорема о «зацикливании» персептрона.Если не существует вектора параметров α , при котором персептрон правильно решает все примеры обучающей выборки, то при обучении персептрона по правилу Хебба через конечное число шагов вектор весов начнет повторяться.
Доказательства этих теорем в данное учебное пособие не включены.
Целочисленность весов персептронов
В данном разделе будет доказана следующая теорема.
Теорема.Любой персептрон (1) можно заменить другим персептроном того же вида с целыми весами связей.
Доказательство. Обозначим множество примеров одного класса (правильный ответ равен 0) через X 0, а другого (правильный ответ равен 1) через X 1. Вычислим максимальное и минимальное значения суммы в правой части (1):
Определим допуск ε как минимум из s 0и s 1. Положим δ= s /( m +1) , где m — число слагаемых в (1). Поскольку персептрон (1) решает поставленную задачу классификации и множество примеров в обучающей выборке конечно, то δ>0. Из теории чисел известна теорема о том, что любое действительное число можно сколь угодно точно приблизить рациональными числами. Заменим веса α i на рациональные числа так, чтобы выполнялись следующие неравенства | α i-α i' |<���δ.
Читать дальше