Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Доказательство. Построим нейронную сеть, состоящую из последовательно соединенных сетей T ( S 1, D ) и T ({0}, S 1), как показано на рис. 6. Очевидно, что на выходе первой сети будут получены те сигналы, которые, будучи поданы на вход второй сети, приведут к получению на выходе второй сети правильного ответа. Таким образом сеть, полученная в результате объединения двух сетей T ( S 1, D ) и T ({0}, S 1), является сетью T ({0}, D ). Что и требовалось доказать.

Рис. 6. Сеть для получения ответа из косвенного дубля.

Следствие. Если у множества S 1нет прямого дубля первого рода, то у нее нет и косвенного дубля первого рода

Доказательство. Пусть это не так. Тогда существует косвенный дубль первого рода. Но по теореме 1 он является и прямым дублем первого рода, что противоречит условию теоремы. Полученное противоречие доказывает следствие.

Прямой дубль второго рода

Перенумеруем входные сигналы из множества S 1={ i 1,…, i k }, k =| S 1|. Множество сигналов, являющееся прямым дублем второго рода для сигнала можно получить найдя минимальное множество для получения ответа, если из исходного множества входных сигналов исключен сигнал . Таким образом прямые дубли второго рода получаются следующим образом:

D j = F ({0},{1,…, M }\{ i j }).

Полный прямой дубль второго рода получается объединением всех дублей для отдельных сигналов

Множество повышенной надежности для прямого дубля второго рода можно записать в следующем виде:

Заметим, что при построении прямого дубля второго рода не требовалось отсутствия в нем всех элементов множества S 1, как это было при построении прямого дубля первого рода. Такое снижение требований приводит к тому, что прямые дубли второго рода встречаются чаще, чем прямые дубли первого рода. Более того, прямой дубль первого рода очевидно является прямым дублем второго рода. Более точное соотношение между прямыми дублями первого и второго родов дает следующая теорема.

Теорема 2.Полный прямой дубль второго рода является прямым дублем первого рода тогда, и только тогда, когда

(1)

Доказательство. Построим сеть, состоящую из параллельно работающих сетей, T ({0},{1,…, M }\{ i j }), за которыми следует элемент, выдающтй на выход среднее арифметическое своих входов. Такая сеть очевидно будет решать задачу, а в силу соотношения (1) она будет сетью T ({0},{1,…, M }\{ S 1}). Таким образом, если соотношение (1) верно, то прямой дубль второго рода является прямым дублем первого рода. Необходимость следует непосредственно из определения прямого дубля первого рода.

Косвенный дубль второго рода

Косвенный дубль второго рода для сигнала является минимальным множеством входных сигналов, для которых существует сеть T ({ i 1},{1,…, M }\{ i 1}). Полный косвенный дубль второго рода строится как объединение косвенных дублей второго рода для всех сигналов первоначального минимального множества:

D j = F ({ i j },{1,…, M }\{ i j }).

Соотношения между косвенными дублями второго рода и другими видами дублей первого и второго рода задаются теоремами 1, 2 и следующими двумя теоремами.

Теорема 3.Косвенный дубль второго рода всегда является прямым дублем второго рода.

Доказательство данной теоремы полностью аналогично доказательству теоремы 1.

Теорема 4.Полный косвенный дубль второго рода является косвенным дублем первого рода тогда, и только тогда, когда верно соотношение

Доказателство данной теоремы полностью аналогично доказательству теоремы 2.

Косвенный супердубль

Последним рассматриваемым в данной работе видом дубля является косвенный супердубль. Косвенным супердублем будем называть минимальное множество входных сигналов, которое позволяет восстановит все входные сигналы. Косвенный супердубль формально описывается следующей формулой:

D = F ({1,…, M },{1,…, M })

Очевидно, что косвенный супердубль является полным косвенным дублем второго рода. Также очевидно, что косвенный супердубль встречается гораздо реже, чем наиболее редкий из ранее рассматриваемых косвенный дубль первого рода.

Процедура контрастирования

Существует два типа процедуры контрастирования — контрастирование по значимости параметров и не ухудшающее контрастирование. В данном разделе описаны оба типа процедуры контрастирования.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x