Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предобработка бинарного признака (BinaryPrep).Предобработка производится в соответствии с табл. 4. главы «Предобработчик»Принимает одно входное данное и генерирует один входной сигнал. Предобработчик содержит следующие параметры.

MinSignals, MaxSignals — значения нижней и верхней границ интервала приемлемых входных сигналов, соответственно. По умолчанию эти величины равны –1 и 1, соответственно.

Unknown — значение сигнала, который будет выдан, если значение входного признака не определено (0). По умолчанию эта величина равна (MinSignals+MaxSignals)/2.

Type — тип предобработки бинарного признака. Если значение параметра Type — истина, то производится предобработка по типу «Наличие другого свойства», если ложь, то по типу «Отсутствие заданного свойства». По умолчанию значение этого параметра равно истина.

Предобработка неупорядоченного качественного признака (UnOrdered). Предобработка производится в соответствии с табл. 5 главы «Предобработчик». Принимает одно входное данное и генерирует Num входных сигналов. Предобработчик содержит следующие параметры.

MinSignals, MaxSignals — значения нижней и верхней границ интервала приемлемых входных сигналов, соответственно. По умолчанию эти величины равны –1 и 1, соответственно.

Unknown — значение сигналов, которые будут выданы, если значение входного признака не определено (0). По умолчанию эта величина равна (MinSignals+MaxSignals)/2.

Num — число состояний качественного признака (число генерируемых входных сигналов). По умолчанию значение этого параметра равно 2.

Предобработка упорядоченного качественного признака (Ordered). Предобработка производится в соответствии с табл. 6 главы «Предобработчик». Принимает одно входное данное и генерирует Num входных сигналов. Предобработчик содержит следующие параметры.

MinSignals, MaxSignals — значения нижней и верхней границ интервала приемлемых входных сигналов, соответственно. По умолчанию эти величины равны –1 и 1, соответственно.

Unknown — значение сигналов, которые будут выданы, если значение входного признака не определено (0). По умолчанию эта величина равна (MinSignals+MaxSignals)/2

Num — число состояний качественного признака (число генерируемых входных сигналов). По умолчанию значение этого параметра равно 2.

Простейший предобработчик (EmptyPrep). Предобработка производится в соответствии с формулой (1). Принимает одно входное данное и генерирует один входной сигнал. Предобработчик содержит следующие параметры.

MinSignals, MaxSignals — значения нижней и верхней границ интервала приемлемых входных сигналов, соответственно. По умолчанию эти величины равны –1 и 1, соответственно.

Unknown — значение сигнала, который будет выдан, если значение входного признака не определено (10 -40). По умолчанию эта величина равна 0.

MinData, MaxData — значения нижней и верхней границ интервала изменения входных данных, соответственно. По умолчанию эти величины равны –1 и 1, соответственно. Эти значения могут быть определены поиском минимального и максимального значений по задачнику, однако предобработчик не может выполнить эту процедуру.

Модулярный предобработчик (ModPrep). Предобработка производится в соответствии с формулой (16). Принимает одно входное данное и генерирует столько входных сигналов, сколько элементов в массиве y (нулевой элемент массива содержит число элементов). Предобработчик содержит следующие параметры.

MinSignals, MaxSignals — значения нижней и верхней границ интервала приемлемых входных сигналов, соответственно. По умолчанию эти величины равны –1 и 1, соответственно.

Unknown— значение сигналов, которые будут выданы, если значение входного признака не определено (10 -40). По умолчанию эта величина равна 0.

Y — массив величин, используемых для предобработки (см. раздел « Модулярная предобработка»).

Функциональный предобработчик (FuncPrep). Предобработка производится в соответствии с формулой (17). Принимает одно входное данное и генерирует столько входных сигналов, сколько элементов в массиве y (нулевой элемент массива содержит число элементов). Предобработчик содержит следующие параметры.

MinSignals, MaxSignals — значения нижней и верхней границ интервала приемлемых входных сигналов, соответственно. По умолчанию эти величины равны –1 и 1, соответственно.

Unknown— значение сигналов, которые будут выданы, если значение входного признака не определено (10 -40). По умолчанию эта величина равна 0.

MinData, MaxData — значения нижней и верхней границ интервала изменения функции F от входных данных, соответственно. По умолчанию эти величины равны –1 и 1, соответственно. Эти значения могут быть определены поиском минимального и максимального значений функции по задачнику, однако предобработчик не может выполнить эту процедуру.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x