Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Стоит заметить, что приведенные только что примеры — это примеры последовательностей , т.е. наборов чисел, записанных через запятую. Это не ряды , члены которых надо складывать. Но с точки зрения анализа ряд — это все-таки слегка замаскированная последовательность. Утверждение «ряд 1 + 1/ 2+ 1/ 4+ 1/ 8+ 1/ 16+ 1/ 32+ … сходится к 2» математически эквивалентно такому утверждению: «последовательность 1, 1 1/ 2, 1 3/ 4, 1 7/ 8, 1 15/ 16, 1 31/ 32, … сходится к 2». Четвертый член этой последовательности представляет собой сумму первых четырех членов ряда и т.д. (Название последовательности такого типа на математическом языке — последовательность частичных сумм данного ряда.) Аналогично, утверждение «гармонический ряд расходится» эквивалентно утверждению «последовательность 1, 1 1/ 2, 1 5/ 6, 2 1/ 12, 2 17/ 60, 2 27/ 32, … расходится». В этой последовательности N- й член равен предыдущему плюс 1/ N .

Все это относится к анализу, т.е. к изучению пределов — того, как именно числовая последовательность может приближаться к некоторому предельному числу, никогда точно его не достигая. Когда говорится, что последовательность продолжается неограниченно, имеется в виду, что, сколько бы членов мы уже ни выписали, всегда можно написать следующий. Когда говорится, что последовательность имеет предел, равный a , имеется в виду, что, какое бы малое число x мы ни взяли, начиная с некоторого момента каждый член последовательности будет отличаться от a на величину, меньшую, чем выбранное x . А если вы предпочитаете говорить «Последовательность стремится к бесконечности» или «Предел N- го члена при N, стремящемся к бесконечности, есть a », то вы вправе так выражаться, если вы сами осознаете, что это просто удобная фигура речи.

VIII.

Традиционное деление на дисциплины внутри математики таково.

Арифметика — наука о целых числах и дробях. Пример теоремы из арифметики: вычитание нечетного числа из четного дает в ответе нечетное число.

Геометрия — наука о фигурах в пространстве — точках, линиях, кривых, трехмерных объектах. Пример теоремы: сумма углов треугольника на плоскости равна 180 градусам.

Алгебра — использование абстрактных символов для представления математических объектов (чисел, линий, матриц, преобразований) и изучение правил, по которым эти символы можно комбинировать. Пример теоремы: для любых двух чисел x и y имеет место равенство (x + y)×(x − y) = x 2 − y 2.

Анализ — наука о пределах. Пример теоремы: гармонический ряд расходится (т.е. неограниченно возрастает).

Кроме этого, в современной математике есть, конечно, много всего другого. Например, в ней есть теория множеств, созданная Георгом Кантором в 1874 году а есть «основания» — раздел, который в 1854 году усилиями англичанина Джорджа Буля отделился от классической логики и в котором исследуются логические основы всех математических концепций. Сами традиционные категории также разрослись и стали включать в себя целые новые темы — геометрия вобрала в себя топологию, алгебра — теорию игр и т.д. Еще до начала XIX века происходило значительное просачивание из одной области в другую. Например, тригонометрия (само слово было впервые употреблено в 1595 году) содержит в себе элементы и геометрии, и алгебры. В XVII веке Декарт арифметизировал и алгебраизировал значительную часть геометрии (правда, чисто геометрические доказательства в стиле Эвклида сохранили свою популярность до наших дней за их ясность, изящество и остроумие).

Как бы то ни было, четырехчленное деление сохраняет свою роль в качестве первоначальной ориентировки в математике. Эта классификация полезна и для понимания одного из величайших завоеваний математики XIX столетия, о котором мы далее будем говорить как о «великом соединении» — привязывании арифметики к анализу, что привело к созданию совершенно новой области исследований — аналитической теории чисел. Позвольте познакомить вас с человеком, который одной только публикацией статьи объемом в восемь с половиной страниц дал жизнь аналитической теории чисел, успешно развивающейся и поныне.

Глава 2. Почва и всходы

I.

О Бернхарде Римане известно немного. Он не оставил никаких документов, позволяющих судить о его внутренней жизни, — за исключением того, что можно почерпнуть из его писем. Его современник и друг Рихард Дедекинд оказался единственным близким к Риману человеком, оставившим подробные воспоминания. Но и они занимают всего 17 страниц и проясняют не так много. Я не могу поэтому даже пытаться охватить в дальнейшем изложении всю личность Римана, но все-таки надеюсь, что читатель вынесет из этого рассказа нечто большее, чем просто имя. В данной главе описание научной деятельности Римана и всего, что с ней связано, сведено к минимуму; об этом мы поговорим более подробно в главе 8.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x