VII.
Остановившись на Жаке Адамаре, я поддался собственным симпатиям — теплым чувствам к приятному человеку и большому математическому таланту. Это, однако, никоим образом не умаляет моего почтения к другим математикам, внесшим вклад в прояснение великой работы Римана и доказательство ТРПЧ. [90]К концу XIX столетия математический мир перешел от эры, когда поистине великих успехов мог достичь великий ум, работающий в одиночку, к эре, когда математика стала коллективным предприятием, в котором работа даже наиболее блестящих исследователей основывается на работе современников и питается ею.
Одним из признаний этого факта стало устройство периодических международных конгрессов математиков. Первое такое собрание состоялось в Цюрихе в августе 1897 года. Жена Адамара как раз ожидала первого ребенка, а потому Адамар там не присутствовал. Он направил свою работу, с тем чтобы ее прочитал его друг Эмиль Пикар. (Интересно заметить, что как раз в то время в 40 милях от Базеля происходил первый Сионистский конгресс, вызванный, по крайней мере отчасти, делом Дрейфуса.)
2-й конгресс математиков прошел в Париже летом 1900 года, и намерение состояло в том, чтобы проводить конгресс каждые четыре года. Однако у Истории имелись собственные планы. Конгресс не проводился в 1916-м, равно как и в 1940, 1944 и 1948 годах. Система их проведения возродилась с 1950 года, когда конгресс состоялся в Кембридже, штат Массачусетс. Адамар, конечно, получил приглашение, но из-за его просоветских склонностей ему сначала отказали в визе для въезда в США. Потребовалось ходатайство коллег-математиков и личное вмешательство Трумэна чтобы обеспечить его приезд в Гарвард. (Во время написания этой книги, в начале 2002 года, идут приготовления к 24-му конгрессу этим летом в Пекине — всего лишь второму конгрессу, проводимому за пределами Европы, России и Северной Америки. [91])
VIII.
Первый математический конгресс XX века состоялся в Париже с 6 по 12 августа 1900 года, и это был один из тех конгрессов, о которых все помнят. Парижский конгресс навсегда останется связан с именем Давида Гильберта — немецкого математика, работавшего в Геттингене — университете Гаусса, Дирихле и Римана. Хотя ему было всего 38 лет, Гильберт уже имел репутацию одного из выдающихся математиков своего времени.
Утром 8 августа в актовом зале Сорбонны Гильберт выступал с докладом о «Математических проблемах» перед примерно двумястами делегатами конгресса, среди которых был и Жак Адамар. Цель Гильберта состояла в том, чтобы обратить мысли коллег-математиков к главным проблемам, которые ставило перед ними новое столетие. Ради этой цели он предложил их вниманию несколько наиболее важных тем, требующих исследования, и задач, требующих решения. Он собрал эти темы и задачи в 23 пункта, восьмым из которых значилась Гипотеза Римана.
С этой речи математика XX века началась всерьез.
Часть вторая
Гипотеза Римана
Глава 11. Обитатели матрешек
I.
В главе 9.vi мы познакомились с некоторыми нулями дзета-функции. Мы видели, что каждое четное отрицательное целое число является нулем дзета-функции: ζ (−2) = 0, ζ (−4) = 0, ζ (−6) = 0 и т.д. Это несколько продвигает нас в понимании Гипотезы Римана, которая, как мы помним, звучит так:
Гипотеза Римана
Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.
К сожалению, все эти отрицательные четные числа — тривиальные нули. Ну… а где же нетривиальные? Чтобы ответить на этот вопрос, нам надо отправиться в царство комплексных и мнимых чисел.
Эта тема многих напрягает. Они полагают, что мнимые числа это просто страшилки или же что-то надуманное, чего не может быть, но что просочилось в математику откуда-то из области научной фантастики. Все это чепуха. Комплексные числа (частным случаем которых являются мнимые) появились в математике из весьма практических соображений. Они приносили математикам пользу при решении задач, которые без этих чисел не решались. Они не более «мнимые», чем числа любого другого вида. Когда это в последний раз вы спотыкались о семерку?
Иррациональные числа (такие как √2 и π ) на самом деле более таинственны, более страшат наш разум и пугают даже сильнее, чем квадратный корень из минус единицы. Действительно, иррациональные числа принесли (и в обличье так называемой континуум-гипотезы продолжают приносить, см. речь Давида Гильберта в главе 12.ii) философам математики куда больше хлопот, чем когда бы то ни было принес безобидный малыш √−1. Предпринимались целенаправленные попытки отказаться от иррациональных чисел, причем даже в наше время и даже со стороны видных профессиональных математиков: Кронеккера в XIX столетии, Брауэра и Г. Вейля в начале XX. По поводу некоторых дополнительных замечаний на эту тему см. раздел V в этой главе.
Читать дальше