Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
VII.

Остановившись на Жаке Адамаре, я поддался собственным симпатиям — теплым чувствам к приятному человеку и большому математическому таланту. Это, однако, никоим образом не умаляет моего почтения к другим математикам, внесшим вклад в прояснение великой работы Римана и доказательство ТРПЧ. [90]К концу XIX столетия математический мир перешел от эры, когда поистине великих успехов мог достичь великий ум, работающий в одиночку, к эре, когда математика стала коллективным предприятием, в котором работа даже наиболее блестящих исследователей основывается на работе современников и питается ею.

Одним из признаний этого факта стало устройство периодических международных конгрессов математиков. Первое такое собрание состоялось в Цюрихе в августе 1897 года. Жена Адамара как раз ожидала первого ребенка, а потому Адамар там не присутствовал. Он направил свою работу, с тем чтобы ее прочитал его друг Эмиль Пикар. (Интересно заметить, что как раз в то время в 40 милях от Базеля происходил первый Сионистский конгресс, вызванный, по крайней мере отчасти, делом Дрейфуса.)

2-й конгресс математиков прошел в Париже летом 1900 года, и намерение состояло в том, чтобы проводить конгресс каждые четыре года. Однако у Истории имелись собственные планы. Конгресс не проводился в 1916-м, равно как и в 1940, 1944 и 1948 годах. Система их проведения возродилась с 1950 года, когда конгресс состоялся в Кембридже, штат Массачусетс. Адамар, конечно, получил приглашение, но из-за его просоветских склонностей ему сначала отказали в визе для въезда в США. Потребовалось ходатайство коллег-математиков и личное вмешательство Трумэна чтобы обеспечить его приезд в Гарвард. (Во время написания этой книги, в начале 2002 года, идут приготовления к 24-му конгрессу этим летом в Пекине — всего лишь второму конгрессу, проводимому за пределами Европы, России и Северной Америки. [91])

VIII.

Первый математический конгресс XX века состоялся в Париже с 6 по 12 августа 1900 года, и это был один из тех конгрессов, о которых все помнят. Парижский конгресс навсегда останется связан с именем Давида Гильберта — немецкого математика, работавшего в Геттингене — университете Гаусса, Дирихле и Римана. Хотя ему было всего 38 лет, Гильберт уже имел репутацию одного из выдающихся математиков своего времени.

Утром 8 августа в актовом зале Сорбонны Гильберт выступал с докладом о «Математических проблемах» перед примерно двумястами делегатами конгресса, среди которых был и Жак Адамар. Цель Гильберта состояла в том, чтобы обратить мысли коллег-математиков к главным проблемам, которые ставило перед ними новое столетие. Ради этой цели он предложил их вниманию несколько наиболее важных тем, требующих исследования, и задач, требующих решения. Он собрал эти темы и задачи в 23 пункта, восьмым из которых значилась Гипотеза Римана.

С этой речи математика XX века началась всерьез.

Часть вторая

Гипотеза Римана

Глава 11. Обитатели матрешек

I.

В главе 9.vi мы познакомились с некоторыми нулями дзета-функции. Мы видели, что каждое четное отрицательное целое число является нулем дзета-функции: ζ (−2) = 0, ζ (−4) = 0, ζ (−6) = 0 и т.д. Это несколько продвигает нас в понимании Гипотезы Римана, которая, как мы помним, звучит так:

Гипотеза Римана

Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.

К сожалению, все эти отрицательные четные числа — тривиальные нули. Ну… а где же нетривиальные? Чтобы ответить на этот вопрос, нам надо отправиться в царство комплексных и мнимых чисел.

Эта тема многих напрягает. Они полагают, что мнимые числа это просто страшилки или же что-то надуманное, чего не может быть, но что просочилось в математику откуда-то из области научной фантастики. Все это чепуха. Комплексные числа (частным случаем которых являются мнимые) появились в математике из весьма практических соображений. Они приносили математикам пользу при решении задач, которые без этих чисел не решались. Они не более «мнимые», чем числа любого другого вида. Когда это в последний раз вы спотыкались о семерку?

Иррациональные числа (такие как √2 и π ) на самом деле более таинственны, более страшат наш разум и пугают даже сильнее, чем квадратный корень из минус единицы. Действительно, иррациональные числа принесли (и в обличье так называемой континуум-гипотезы продолжают приносить, см. речь Давида Гильберта в главе 12.ii) философам математики куда больше хлопот, чем когда бы то ни было принес безобидный малыш √−1. Предпринимались целенаправленные попытки отказаться от иррациональных чисел, причем даже в наше время и даже со стороны видных профессиональных математиков: Кронеккера в XIX столетии, Брауэра и Г. Вейля в начале XX. По поводу некоторых дополнительных замечаний на эту тему см. раздел V в этой главе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x