Вооруженный только этими средствами и используя ряд вполне элементарных приемов из дифференциального и интегрального исчисления, Чебышев получил два важных результата. Первый состоит в доказательстве «постулата Бертрана», выдвинутого в 1845 году французским математиком Жозефом Бертраном. Постулат гласит, что между любым числом и его удвоением (например, между 42 и 84) всегда найдется простое число. Второй результат Чебышева таков.
Второй результат Чебышева.
π(N) не может отличаться от N/ ln N более чем примерно на 10% в большую или меньшую сторону.
Вторая статья Чебышева важна в двух отношениях. Прежде всего, использование в ней ступенчатой функции могло вдохновить Римана на использование подобной же функции в его работе 1859 года (об этом будет подробно рассказано ниже). Не подлежит сомнению, что Риман знал о работе Чебышева; имя российского математика появляется в записках Римана (где оно пишется как «Tschebyschev»).
Но большего внимания заслуживает сама идея подхода, развитого Чебышевым во второй статье. Он получил свои результаты без использования теории функций комплексной переменной. У математиков есть короткий способ для выражения этого факта: они говорят, что методы Чебышева «элементарны». Риман в своей работе 1859 года не использовал элементарные методы. Для решения исследуемой им проблемы он привлек всю мощь теории функций комплексной переменной. Полученные результаты оказались столь замечательными, что другие математики последовали его примеру, и в конце концов ТРПЧ была доказана с использованием неэлементарных методов Римана.
Вопрос о том, можно ли доказать ТРПЧ элементарными методами, оставался открытым, но по прошествии нескольких десятилетий общее мнение утвердилось в том, что это невозможно. Так, в тексте Алберта Ингэма 1932 года «Распределение простых чисел» автор сообщает в подстрочном примечании: «Доказательство теоремы о распределении простых чисел „в терминах вещественных переменных“, т.е. доказательство, не вовлекающее, будь то явным или неявным образом, понятие аналитической функции комплексной переменной, никогда не было обнаружено, и теперь понятно, почему так и должно быть».
Ко всеобщему изумлению, такое доказательство было обнаружено в 1949 году Атле Сельбергом — норвежским математиком, работавшим в Институте высших исследований в Принстоне, штат Нью-Джерси. [70]История получения этого результата неоднозначна, поскольку Сельберг предварительно сообщил о своих, еще неокончательных, идеях эксцентричному венгерскому математику Паулю Эрдешу, который использовал их и получил свое собственное доказательство одновременно с Сельбергом. После смерти Эрдеша в 1996 году были написаны две его популярные биографии, и любознательный читатель может найти полный отчет об этой запуганной истории в любой из них. Доказательство называется «доказательством Эрдеша-Сельберга» в Венгрии и «доказательством Сельберга» за ее пределами. {A2}
В дополнение к своим исследованиям Чебышев был замечательным научным руководителем, умевшим увлечь своими темами. Его ученики несли идеи и методы учителя в другие российские университеты, повсюду пробуждая интерес и поднимая уровень преподавания. Сохраняя активность и на восьмом десятке лет, Чебышев был также оригинальным изобретателем, сконструировавшим несколько арифмометров, которые сохранились до нашего времени в музеях Москвы и Парижа. В его честь назван лунный кратер, расположенный около 135°W 30°S. [71]
IV.
Я не могу расстаться с Чебышевым, не упомянув, по крайней мере мимоходом, о его знаменитом отклонении — знаменитом, я хочу сказать, среди специалистов по теории чисел.
Если разделить простое число (отличное от 2) на 4, то остаток должен быть или 1, или 3. Демонстрируют ли простые числа какое-нибудь отклонение? Да: в пределах до p = 101 имеются 12 простых, которые дают остаток 1, и 13 тех, что дают остаток 3. В пределах до p = 1009 счет равен 81 к 87. В пределах до p = 10 007 счет равен 609 к 620. Ясно видно, что остаток 3 встречается не намного, но все же отчетливо чаще, чем остаток 1. Это дает пример чебышевского отклонения, первое замечание Чебышева о котором относится к 1853 году. Отклонение, которое таким образом выказывают остатки, в конце концов нарушается при p = 26 861, когда простые, дающие остаток 1, на короткое время вырывают первенство. Однако это не более чем единовременное отклонение: настоящая первая зона , где происходит нарушение, составлена из 11 простых чисел от p = 616 877 до p = 617 011. Простые с остатком 1 удерживают лидерство только для 1939 из первых 5,8 миллиона простых (предел, до которого я дошел в своих проверках). Они ни разу не вырываются вперед среди последних 4 988 472 из этих простых чисел.
Читать дальше