Поле p- адических чисел обозначается символом Q p . Таким образом, имеются поле Q 2, поле Q 3, поле Q 5, поле Q 7, поле Q 11и т.д. Каждое из них — полное поле: Q 2есть поле 2-адических чисел, Q 3есть поле 3-адических чисел и т.д.
Как можно догадаться уже из обозначений, p- адические числа чем-то похожи на обычные рациональные числа. Однако поле Q p богаче и устроено более сложно, чем поле Q, и в некоторых отношениях скорее напоминает поле вещественных чисел R. Как и R, поле Q p можно использовать для пополнения поля Q.
Здесь вы можете высказать определенное недоумение: «Все отлично, но ведь было сказано, что поле Q p этих странных новых объектов — р- адических чисел — существует для всякого простого числа p и что любое Q p позволяет пополнить поле Q; так какое же из них надо предпочесть? Q 2? Q 3? Q 11? Q 45827? Какое простое число должен выбрать профессор Конн, чтобы устроить свой фокус — перекинуть мост между простыми числами и физикой динамических систем?»
Ответ таков: их все! Дело в том, что имеется алгебраическое понятие, называемое аделем , которое охватывает в свои широкие объятия все Q p для всех простых чисел 2, 3, 5, 7, 11, …. И там же оказываются и вещественные числа! Адели построены из Q 2, Q 3, Q 5, Q 7,… и Rспособом, напоминающим тот, каким p- адические числа построены из CLOCK p , CLOCK p 2, CLOCK p 3, …. Если угодно, адели находятся на один уровень абстракции выше p- адических чисел, которые сами располагаются на один уровень абстракции выше, чем рациональные числа.
Если от всего этого у вас кружится голова, то достаточно сказать, что имеется класс суперчисел, являющихся одновременно 2- адическими, 3-адическиими, 5-адическими, … и при этом еще и вещественными. В каждое из этих суперчисел вложены все простые числа.
Без сомнения, адель — довольно заумное понятие. Однако нет на свете ничего настолько заумного, чтобы оно рано или поздно не пробило себе дорогу в физику. В 1990-х годах математические физики взялись за создание адельной квантовой механики, где реальные измерения в эксперименте, приводящие к рациональным числам, воспринимаются как проявление этих причудливых созданий, вытащенных из темных глубин математической бездны.
Пространство такого типа — адельное пространство — и построил Ален Конн в качестве площадки, где может резвиться его риманов оператор. Из-за того что оно адельное, в него, так сказать, встроены все простые числа. Действующие на этом пространстве операторы по необходимости основаны на простых числах. Теперь, я надеюсь, стало немного понятнее, как же можно построить риманов оператор, собственные значения которого являются в точности нетривиальными нулями дзета-функции, а в пространство, на котором он действует, простые числа встроены тем способом, который я пытался описать, но которое при этом имеет отношение к реальным физическим системам — реальным наборам субатомных частиц.
Доказательство Гипотезы Римана (ГР) в этом случае сводится к доказательству определенной следовой формулы — т.е. формулы типа формулы Гутцвиллера, которая связывает собственные значения оператора, действующего на конновском адельном пространстве, с периодическими орбитами в некоторой аналоговой классической системе. Поскольку простые числа уже встроены в одну часть формулы, все должно получиться без труда. Некоторым образом так и происходит, и конструкция Конна элегантна до блеска — уровни энергии в ней суть в точности нули дзета-функции на критической прямой. К сожалению, из нее до сих пор не последовало даже намеков на то, почему же нули дзета-функции не могут оказаться вне критической прямой!
Спектр мнений о ценности построения Конна довольно широк. Вовсе не будучи уверенным, что я сам ее понимаю, я опросил нескольких настоящих математиков, работающих в этой области. Сейчас мне надо продвигаться вперед с крайней осторожностью. Насколько мне известно, Ален Конн, возможно, заявит о доказательстве Гипотезы Римана в тот день, когда эта книга выйдет из печати, и мне не хотелось бы никого вводить в заблуждение. Приведу две цитаты из того, что мне сказали профессионалы:
Математик X :«Колоссально важная работа! Конн не только докажет ГР, но заодно и предложит нам Единую теорию поля!»
Читать дальше