Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как много существует энергетических уровней? Когда ядро переходит с уровня a на уровень b ? Насколько энергетические уровни отстоят друг от друга и почему именно настолько? Подобная постановка вопроса по сути вводит задачу об исследовании атомного ядра в контекст более широкого круга задач — задач о динамических системах, т.е. о наборах частиц, каждая из которых во всякий момент времени занимает определенное положение в пространстве и имеет определенную скорость. По мере развития исследований в 1950-х годах стало ясно, что некоторые из наиболее интересных динамических систем, включая тяжелые ядра, слишком сложны и не поддаются точному математическому анализу в квантовой области. Число энергетических уровней оказалось слишком большим, а возможные конфигурации слишком многочисленны. Такая картина представляет собой самый устрашающий вариант «задачи многих тел» из классической (т.е. доквантовой) механики, где несколько объектов (например, планеты Солнечной системы) действуют друг на друга посредством гравитации.

Когда приходится иметь дело с таким уровнем сложности, точная математика сталкивается с целым рядом проблем, и поэтому исследования в этой области стали опираться на статистику. Если мы не можем определить, что произойдет точно, то, возможно, нам удастся выяснить, что скорее всего произойдет в среднем. Подобные статистические подходы широко развивались в классической механике начиная примерно с 1850 года, т.е. задолго до появления квантовой теории. В квантовом мире все устроено слегка по-другому, но там, по крайней мере, можно использовать значительный объем результатов, накопленных в классической теории. В конце 1950-х и начале 1960-х годов был создан основной аппарат и были разработаны статистические средства для анализа сложных квантовых динамических систем, подобных ядрам тяжелых элементов. Главными действующими лицами здесь были ядерные физики Юджин Вигнер и Фримен Дайсон. Главным же понятием оказались случайные матрицы.

II.

Случайная матрица — это именно то, что следует из ее названия: матрица, составленная из чисел, выбранных случайным образом. На самом деле не совсем случайным. Позвольте привести пример. Вот случайная (4×4)-матрица достаточно специального типа, важность которого я объясню чуть позже. Для экономии места будем все округлять до четырех знаков после запятой:

Первое что можно заметить по поводу этой хитроумной штуковины данная - фото 123

Первое, что можно заметить по поводу этой хитроумной штуковины, — данная матрица является эрмитовой: она обладает той самой как бы симметрией относительно главной диагонали, которая упоминалась в главе 17.v. Вспомним еще несколько фактов из той главы.

• С каждой (N×N)- матрицей связан многочлен степени N , называемый характеристическим многочленом.

• Нули характеристического многочлена называются собственными значениями матрицы.

• Сумма собственных значений называется следом матрицы (и равна сумме элементов, занимающих главную диагональ).

• В частном случае эрмитовых матриц все собственные значения вещественны и, следовательно, вещественны и коэффициенты характеристического многочлена, а также след.

Для матрицы из приведенного примера характеристический многочлен имеет вид

x 4− 1,1836 x 3− 15,3446 x 2+ 26,0868 x − 2,0484,

а собственные значения равны −3,8729, 0,0826, 1,5675 и 4,0864. След равен 1,8636.

Посмотрим теперь повнимательнее на те числа, из которых состоит приведенная выше матрица. Числа, которые мы видим, — вещественные числа на главной диагонали и также вещественные и мнимые части комплексных чисел, занимающих места недиагональных элементов, — случайны в некотором специальном смысле (диагональные случайны с небольшим уточнением, которое будет объяснено ниже). Они выбраны случайным образом из нормального гауссова распределения — знаменитой «колоколообразной кривой», которая повсеместно возникает в статистике.

Рисунок 181Нормальное гауссово распределение Представим себе стандартную - фото 124

Рисунок 18.1.Нормальное гауссово распределение.

Представим себе стандартную колоколообразную кривую, нарисованную на разлинованном листе бумаги с очень мелкими делениями, так что под кривой расположены сотни квадратиков, образованных разметкой листа (рис. 18.1). Случайным образом выберем один из этих квадратиков; расстояние по горизонтали от него до вертикальной линии, проходящей через середину пика, представляет собой случайное число с нормальным гауссовым распределением. Вблизи самого пика скопилось намного больше этих квадратиков, чем под хвостами кривой, так что с гораздо более высокой вероятностью мы выберем число между +1 и −1, нежели число справа от +2 или слева от −2. Это же видно и из приведенной выше матрицы. (Впрочем, по некоторым техническим причинам элементы на ее главной диагонали в действительности представляют собой случайные гауссовские числа, умноженные на √2, а потому их значения — несколько большие, чем того следовало ожидать.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x