Существует древнее описание массивного куба, воздвигнутого в центре выложенной плитами площадки, и не требуется большого воображения, чтобы связать этот монумент с задачей Платона. На рисунке вы видите Платона, созерцающего такой массивный мраморный куб, который сложен из некоторого числа меньших кубов. Монумент возвышается в центре квадратной площадки, выложенной такими же малыми мраморными кубами. Число кубов в площадке и в монументе одинаково. Скажите, сколько кубов требуется, чтобы построить монумент и квадратную площадку, и вы решите великую задачу о геометрических числах Платона.
Дэдвудский экспресс
Дэдвудский экспресс доставил в шахтерский городок два ящика для одной юной леди. Между проводником и шахтерами, приятелями этой леди, которые явились за грузом, произошел спор.
Дело в том, что проводник хотел взять плату за провоз ящиков согласно прейскуранту – по 5 долларов за кубический фут. А шахтеры упрямо отказывались платить на подобных условиях, утверждая, что по действующим на шахтах законам всегда платят за погонный фут. Да и вообще молодые люди не могли понять, какое право имеет железнодорожная компания касаться «кубического содержимого» ящиков юной леди!
Проводнику в конце концов пришлось принять их условия: он измерил длину ящиков и взял по 5 долларов за погонный фут. Оба ящика имели форму правильных кубов, и один был ровно вдвое ниже другого.
Самое странное состоит в том, что, приложив ящики друг к другу и измерив их суммарную длину, проводник обнаружил, что в обоих случаях цены за провоз не отличаются даже на одну тысячную цента: можно было с равным успехом брать по 5 долларов как за кубический, так и за погонный фут.
Каковы размеры двух ящиков?
Эта простая, но и достаточно интересная головоломка заставит вас подумать, прежде чем вы найдете правильный ответ.
Передвигая одновременно по два бокала, за четыре хода измените их расположение так, чтобы пустые бокалы чередовались с полными
Для читателей, интересующихся трюками, которые можно было бы продемонстрировать в гостиной, мы предлагаем позабавящую гостей головоломку. Вам нужны для этого восемь бокалов – четыре пустых и четыре полных.
Здесь, как и при демонстрации многих других трюков такого типа, все зависит от умения и ловкости рук. Вы должны тщательно подготовиться, чтобы быстро и легко проделывать нужные манипуляции как в ту, так и в другую сторону. Если вы к тому же будете отвлекать зрителей разговором, создастся впечатление, что повторить этот маленький трюк очень просто. Каждый не откажется продемонстрировать свою сноровку, однако девяносто девять человек из ста не справятся с заданием.
Итак, передвигая одновременно по два бокала, за четыре хода измените расположение восьми бокалов так, чтобы пустые бокалы стали чередоваться с полными. На рисунке бокалы для удобства пронумерованы.
Найдите путь к опушке леса!
Великий математик Эйлер открыл правило, позволяющее решать все виды головоломок с лабиринтами, которые, как известно, зависят главным образом от движения в обратном направлении. Однако к настоящей головоломке правило Эйлера неприменимо. Попытки, предпринимающиеся до сих пор, заставляют думать, что, вероятно, это единственная головоломка, не поддающаяся его методу.
Начинайте с сердечка в центре рисунка. Пройдите три шага по прямой в любом из восьми направлений: на север, юг, восток, запад или на северо-восток, северо-запад, юго-восток или юго-запад. Сделав три шага, вы окажетесь в квадрате с номером, который показывает, сколько шагов вы должны сделать по прямой «на следующий день» в любом из восьми направлений. Из этой новой точки двигайтесь снова в соответствии с новым числом и т. д., пока не окажетесь в квадрате, [9]из которого сделаете ровно один шаг на опушку леса. Тогда вы выберетесь из леса и можете кричать от радости сколько угодно, ибо вы решили головоломку!
Поссорившиеся пары
Я полагаю, что все любители головоломок, как молодые, так и умудренные опытом, сумеют переправить через речку волка, козу и капусту в двухместной лодке.
Читать дальше