– А ты пересчитай, – посоветовали ему.
– И пересчитаю! В воскресенье будет у меня свободное время, я и займусь этим делом.
В воскресенье он встал рано утром и сразу же принялся за счет, аккуратно отмечая точками сосчитанные квадратики. Каждую секунду появлялась новая точка под острием его карандаша; работал он усердно, и дело шло быстро.
Но убедился ли он в этот день, что квадратный метр заключает действительно миллион миллиметровых клеточек?
ЗАДАЧА № 55
Кубический метр
В одной школе учитель задал вопрос: какой высоты получился бы столб, если бы поставить один на другой все миллиметровые кубики, заключающиеся в кубическом метре?
– Это было бы выше Эйфелевой башни (300 метров)! – воскликнул один школьник.
– Даже выше Монблана (5 км), – ответил другой.
Кто из них ошибался больше?
ЗАДАЧА № 56
Кубический километр
Вообразите кубический ящик высотой в целый километр (немного менее версты). Как вы думаете, сколько таких ящиков понадобилось бы, чтобы вместить тела всех людей, живущих на свете? Примите во внимание, что население земного шара равно 1800 миллионам человек и что в одном кубическом метре можно уместить, средним счетом, 5 человеческих тел.
ЗАДАЧА № 57
Волос
Человеческий волос очень тонок: толщина его – около 20-й доли миллиметра. Но если бы волос был в миллион раз толще, какой примерно ширины был бы он? Один из моих знакомых, которому я задал этот вопрос, ответил, что волос был бы тогда толще круглой комнатной печи; другой утверждал, что волос был бы шириной во всю комнату. Оба, конечно, ошибались, – но кто ошибся больше?
ЗАДАЧА № 58
Сколько портретов?
Нарисуйте портрет на папке и разрежьте его на полосы, как показано на нашем рисунке, – положим, на 9 полос. Если вы умеете хоть немного рисовать, вам нетрудно будет изготовить еще такие же полосы с изображением различных частей лица, – однако так, чтобы каждые две соседние полосы, даже принадлежащие к разным портретам, можно было прикладывать одну к другой без нарушения непрерывности линий. Если вы для каждой части лица приготовите, например, 4 полосы [13] , у вас будет 28 полос, из которых, складывая по 9, вы сможете составлять разнообразные портреты.
Рис. 42. Составные портреты.
В магазинах, где одно время продавали готовые наборы таких полос (или брусков) для составления портретов, продавцы уверяли покупателей, что из 36 полос можно получить т ы с я ч у различных физиономий.
Верно ли это?
ЗАДАЧА № 59 Французский замок
Хотя французский замок известен всем, но устройство его знают лишь немногие. Поэтому часто приходится слышать сомнения в том, чтобы могло существовать большое число различных французских замков и ключей к ним. Достаточно, однако, познакомиться с остроумным механизмом этих замков, чтобы убедиться в возможности разнообразить их в достаточной степени.
Рис. 43-й изображает французский замок, как мы его видим с лица (кстати, – название «французский» совершенно неправильно, так как родина этих замков Америка, а изобретатель их американец Иэль, – почему на всех таких замках и ключах имеется надпись «Yale»). Вы видите вокруг замочной скважины небольшой кружок: это основание валика, проходящего через весь замок. Задача открывания замка заключается в том, чтобы повернуть этот валик, – но в этом-то и вся трудность. Дело в том, что валик удерживается в определенном положении пятью короткими стальными стерженьками (черт. 44). Каждый стерженек в каком-нибудь месте распилен надвое, и только если разместить стерженьки так, чтобы все разрезы приходились на уровне валика, можно будет его повернуть.
Рис. 43.
Рис. 44. Продольный разрез через французский замок.
Это необходимое расположение придает стерженькам ключ с соответственными выступами на краю: достаточно его вставить, чтобы стерженьки заняли то определенное и единственное расположение, которое необходимо для открытия замка.
Теперь легко понять, что число различных замков этого типа может быть действительно весьма велико. Оно зависит от того, сколькими способами можно разрезать каждый стержень на две части; число это, разумеется, не бесконечно, если принять во внимание ограниченную высоту зубчиков ключа.
Предположите, что каждый стерженек можно разрезать на две части 10-ю способами, и попробуйте сосчитать, сколько же различных французских замков можно при таком условии изготовить?
ЗАДАЧА № 60 Cкромная награда
Задача, которую я вам сейчас предложу, не нова, даже очень не нова. Она общеизвестна, но именно потому я и включил ее в этот сборник головоломок. Ведь книжка моя предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным.
Читать дальше
Конец ознакомительного отрывка
Купить книгу