Есть также важная работа по неопределенным уравнениям, где существует несколько возможных ответов — иногда бесконечное их множество. В книге представлены два типа задач: первая — задача на остаток, вторая известна как «задача о сотне домашних птиц». Задача о сотне домашних птиц в самом разном виде встречается в самых разных уголках средневекового мира — в европейских, арабских и индийских текстах. В «Десяти канонах» сказано, что петушки стоят 5 цянь, курицы — 3 цянь, а 3 цыпленка — 1 цянь. Если 100 птиц куплены за 100 цянь, сколько каких птиц было куплено? Приводятся три решения. Одно из них — 4 петушка, 18 куриц и 78 цыплят. (Есть решение с отсутствующим элементом, когда можно купить 25 куриц и 75 цыплят, но ни одного петушка.) Эти ответы правильные, но объяснение, похоже, неверное.
При описании задачи на остаток приводится и результат, и общий метод, но снова без объяснения. В этой задаче, согласно описанию в «Девяти главах», приобретается неизвестное число предметов. Если посчитать их по три, остается две штуки, если посчитать их по пять штук, остается три, а если считать их по семь штук, остается два. Цель состоит в том, чтобы найти число купленных предметов. Решение скорее методологическое, чем объяснительное. В целом для решения задачи требуется найти наибольший общий сомножитель для чисел 3, 5 и 7. Странно, но в следующий раз эта же задача упоминается только в тринадцатом веке в работе Цинь Цзюшао.
Цинь Цзюшао родился в городе Аньюэ (ныне в провинции Сычуань). Его отец занимал множество различных административных постов, включая должность заместителя директора Дворцовой библиотеки. Цинь Цзюшао изучал астрономию в столице, Ханьчжоу, но в 1234 году вступил в армию, чтобы противостоять монгольским захватчикам. Это были десять тяжелых лет. В 1244 году он вернулся и стал «придворным чиновником с широкими полномочиями» (это высокий титул) в префектуре Цзянькан (ныне Нанкин), однако в том же году Цинь Цзюшао удалился от службы на три года, чтобы оплакать смерть матери. Вероятно, именно в этот период он составил свой труд «Шу шу цзю чжан» («Девять книг по математике»), структура которого напоминает «Десять канонов», но несколько сложнее.
В «Шу шу цзю чжан» описываются методы решения задач индивидуального сравнения и ряда одновременных сравнений, как в случае задачи на остаток. Сравнения, возможно, лучше известны в форме модульной арифметики (арифметические операции над абсолютными значениями чисел). Решения соответствуют тому, что теперь известно как китайская теорема остатка. Цинь Цзюшао утверждает, что он научился этому методу у составителей календарей, работавших в Императорском Астрономическом бюро в Ханьчжоу, но там использовали правило, не понимая его. Это правило было выведено для того, чтобы решить проблему сопоставления различных циклов вроде лунного месяца, солнечного года и искусственного шестидесятеричного цикла. Фактически даже Гаусс, который вновь открыл метод пять столетий спустя, использовал для примера задачи с календарными циклами. Неясно, где Цинь Цзюшао на самом деле узнал это правило. Подлинное новаторство первоклассного математика заключается в выходе за пределы традиции комментариев. Он применил давнюю китайскую вычислительную традицию для решения реальных проблем.
Древнейшие свидетельства о наличии математики в Азии мы видим в следах цивилизации Хараппы, существовавшей в долине Инда; они датируются концом четвертого — началом третьего тысячелетия до нашей эры. Хотя самые ранние документы довольно трудно расшифровать, понятно, что это торговые счета, с весами и размерами, с особой ссылкой на передовую технологию производства кирпичей. Приблизительно в 1500-х годах до нашей эры культура Хараппы была уничтожена захватчиками с севера. Их называли ариями. Они были пастухами, говорили на индоевропейском языке, предшественнике санскрита и многих современных языков. Первая письменная кодификация языка была сделана великим филологом Панини в четвертом веке до нашей эры. Он в одиночку сумел сделать санскрит понятным языком, кодировавшим мысли целого субконтинента в течение более чем двух тысяч лет. Если можно сказать, что греческая математика проистекает из философии, то корни индийской математики уходят в лингвистику.
Самая ранняя ведическая литература прежде всего носит религиозный и церемониальный характер. Наиболее ценны с точки зрения математики — приложения к главным «Ведам», известные как «Веданги». Они записаны в виде сутр — коротких поэтических афоризмов, столь типичных для санскритских текстов, которые стремятся передать содержание в наиболее сжатой и запоминающейся форме. «Веданги» разделены на шесть областей: фонетика, грамматика, этимология, поэзия, астрономия и ритуалы. Последние два предмета дают нам возможность оценить уровень развития математики того времени. Раздел «Веданг», посвященный астрономии, называют «Джьотиша-сутра», в то время как раздел, посвященный ритуалам, носит название «Кальпа-сутра». Одна из его частей, посвященная строительству жертвенных алтарей, называется «Шульба-сутра».
Читать дальше