Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Здесь есть возможность читать онлайн «Игнаси Белда - Том 33. Разум, машины и математика. Искусственный интеллект и его задачи» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: Де Агостини, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.

Том 33. Разум, машины и математика. Искусственный интеллект и его задачи — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Гэрберт Саймонслева и Аллен Ньюэллза игрой в шахматы 1958 год В Logic - фото 9

Гэрберт Саймон(слева) и Аллен Ньюэллза игрой в шахматы, 1958 год.

В Logic Theorist использовались так называемые символьные системы, созданные математиками, чтобы придать смысл некоторым выражениям и уйти от произвольных обозначений. К примеру, мы можем утверждать: высказывание «быть человеком» означает «быть смертным», что можно записать математически как А —> В, где символ Аэквивалентен высказыванию «быть человеком», символ —>— «означает», а Вравносильно высказыванию «быть смертным». «Быть человеком означает быть смертным» — это произвольное высказывание, которое записывается выражением А —> В. После формализации всех произвольных членов выполнять операции с ними намного проще с точки зрения математики и информатики.

Для упрощения математических действий символьные системы опираются на аксиомы, из которых выводятся теоремы. Преимущество символьных систем в том, что они являются формальными и однозначно определенными, поэтому программировать их сравнительно просто. Рассмотрим пример:

Сократ — человек.

Все люди смертны.

Следовательно, Сократ смертен, поскольку он — человек.

Если мы запишем эти высказывания в формальном виде, они будут выглядеть так:

А: Сократ

В: человек (люди)

А—> В

С: смертен (смертны)

В—> С

Если А—> Ви В—> С, то А —> С, то есть Сократ смертен.

В этом случае правило вывода под названием «гипотетический силлогизм» позволяет заключить, что А —> Систинно, если А—> Ви В—> С.

Тем не менее число вариантов, полученных при автоматическом и систематическом выводе теорем на основе аксиом и правил вывода, будет опасно близко к числу атомов во Вселенной. По этой причине в машине Logic Theorist использовались эвристические рассуждения, то есть методы нечеткого прогнозирования, которые помогали выбрать лучшие производные высказывания среди возможных. Отобранные высказывания определяли правильную последовательность выводов, позволявших прийти от аксиом к доказательству теорем.

Рассмотрим практический пример. Мы хотим знать, смертен ли Сократ. Нам известны следующие исходные аксиомы:

А: Сократ

В: болельщик «Олимпиакоса

С: грек

D: человек

Е: смертен

А —> С

С —> D

A —> D

С —> Б

D —> E

Определим, истинно или ложно А —> Е, с помощью «грубой силы», то есть путем перебора всех возможных сочетаний. Имеем:

А —> С —> D —> Е

A —> С —> В

A —> D —> E

Мы выполнили семь логических операций, взяв за основу всего пять аксиом и одно правило вывода — гипотетический силлогизм. Легко догадаться, что в сценариях, содержащих больше аксиом и правил вывода, число возможных сочетаний может оказаться столь велико, что на получение доказательств уйдут годы. Чтобы решить эту проблему так, как это сделали Саймон и Ньюэлл, используем эвристическое рассуждение (или эвристику). В нашем примере эвристика подскажет: если мы хотим доказать, что некий человек смертен, нет необходимости заводить разговор о футболе (А —> С —> В).

И символьные, и эвристические системы широко используются для решения практических задач, а не только для автоматического доказательства теорем.

Приведем еще один пример использования эвристик. На каждом ходу в шахматной партии существует в среднем 37 возможных вариантов. Следовательно, если компьютерная программа будет анализировать партию на восемь ходов вперед, на каждом ходу ей придется рассмотреть 37 8возможных сценариев, то есть 3512479453921 ходов — более 3,5 млрд вариантов. Если компьютер тратит на анализ каждого варианта одну микросекунду, то при анализе партии всего на восемь ходов вперед (достаточно простая задача для профессионального шахматиста) мощный компьютер будет думать над каждым ходом больше двух с половиной лет!

Для ускорения процесса нужны какие-то улучшения, которыми и будут эвристики. Эвристики — это правила прогнозирования, позволяющие исключить из рассмотрения ходы, которые ведут к очень невыгодной позиции и поэтому нецелесообразны. Уже благодаря тому, что эвристики позволяют исключить из рассмотрения несколько абсурдных ходов, число анализируемых вариантов существенно сокращается. Таким образом, эвристики — это средства прогнозирования, основанные на интуиции программиста, которые играют столь важную роль в большинстве интеллектуальных систем, что в значительной степени определяют их качество.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи»

Представляем Вашему вниманию похожие книги на «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Искусственный Интеллект RT - Заповедник мертвецов
Искусственный Интеллект RT
Отзывы о книге «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи»

Обсуждение, отзывы о книге «Том 33. Разум, машины и математика. Искусственный интеллект и его задачи» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x