Несмотря на столь важные открытия, идея о том, что для политической экономии вполне пригоден язык математики, с ее функциями, уравнениями и анализом бесконечно малых, вызвала серьезную критику со стороны других великих экономистов XIX столетия. Многие из них использовали исторический анализ и считали абсурдной саму идею — выражать человеческую предприимчивость на языке чисел и математических формул. Сходились с ними и сами математики, ссылавшиеся на то, что использование в экономике математических методов позволило получить весьма немногочисленные результаты. Итогом многолетнего сотрудничества экономистов и математиков стала лишь система уравнений, описывающих равновесие Вальраса.
Большой шаг вперед в изучении ценообразования сделал Пьеро Сраффа, ученик английского ученого Джона Мейнарда Кейнса. В своей книге «Производство товаров посредством товаров» он предложил следующее уравнение:
Р= S+ В+ R,
в котором уравновешены цена ( Р) и переменные зарплата ( S), прибыль ( В) и рента ( R).
Политическая арифметика, или Рождение статистики
В 1642 году молодой французский математик Блез Паскаль изобрел «Паскалину» — первую вычислительную машину с зубчатым механизмом. Машина могла складывать и вычитать любые числа, количество разрядов в которых не превышало восьми.
С помощью своего изобретения Паскаль хотел облегчить труд отца — налогового инспектора. Всего было изготовлено около пятидесяти «Паскалин».
Слева — «Паскалина», справа — вычислительная машина, изобретенная Лейбницем.
В 1694 году Готфрид Вильгельм Лейбниц на основе «Паскалины» создал машину, способную выполнять умножение и деление. Швейцарский математик Якоб Бернулли в 1705 году в книге «Искусство предположений» изложил зачатки теории вероятностей. Он показал, что с ростом числа наблюдений неопределенность уменьшается, и описал такой идеальный эксперимент: «В урне находится 3000 черных шариков и 2000 белых. Если мы будем извлекать шарики из урны, записывать их цвет и опускать их обратно в урну, то убедимся, что с ростом числа наблюдений соотношение белых и черных шариков будет все ближе к 2/3». Сегодня это утверждение известно как закон больших чисел — одна из основ математической статистики.
Антуан Лавуазье, создавший современную систему химических обозначений и формул, использовал свои знания в области вычислений и измерений в администрировании. Он участвовал в работе комиссии по десятичной метрической системе и в 1791 году создал «Краткое изложение различных работ по политической арифметике». Его труд решал насущные для Французской республики задачи, ведь в ту эпоху налоги взимались в зависимости от стоимости имущества, размеров обрабатываемой земли и поголовья скота.
Лавуазье попытался вычислить общую площадь всей обрабатываемой земли во Франции. Для этого он собрал данные о ежегодном потреблении пищи и алкоголя в городах и деревнях и подсчитал, сколько земли необходимо для производства всех этих продуктов. Благодаря Лавуазье известно, что в 1790 году во Франции насчитывалось 25 миллионов жителей, из которых восемь жили в городах, а еще восемь занимались виноградарством. Лавуазье призывал создать учреждение, которое регулярно собирало бы статистические данные о сельском хозяйстве, торговле, численности и составе населения. Ученый был так убежден в возможностях статистики, что полагал: скоро она заменит политическую экономию.
Другой работой, важной для появления статистики, стал «Опыт закона о народонаселении» Томаса Мальтуса. Этот труд, написанный в конце XVIII века, оказал огромное влияние на многих социологов и экономистов. Мальтус отмечал, что производство продуктов питания растет в арифметической прогрессии (1, 2, 3, 4, …), а численность населения — в геометрической (1, 2, 4, 8, …), при этом площадь земли, пригодной для возделывания, ограничена, и производительность труда на ней снижается. Так как население с определенной периодичностью удваивается, мир словно делится снова и снова пополам, и каждый раз для удовлетворения потребностей остается все меньше ресурсов. Наступит момент, когда их окажется недостаточно, и тогда возрастет смертность или же оплата труда установится на минимальном уровне, достаточном для выживания.
Читать дальше